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1 Introduction

EBSeq may be used to identify differentially expressed (DE) genes and isoforms
in an RNA-Seq experiment. As detailed in Leng et al., 2012 [3], EBSeq is an
empirical Bayesian approach that models a number of features observed in RNA-
seq data. Importantly, for isoform level inference, EBSeq directly accommodates
isoform expression estimation uncertainty by modeling the differential variability
observed in distinct groups of isoforms. Consider Figure 1, where we have
plotted variance against mean for all isoforms using RNA-Seq expression data
from Leng et al., 2012 [3]. Also shown is the fit within three sub-groups of
isoforms defined by the number of constituent isoforms of the parent gene. An
isoform of gene g is assigned to the N, = k group, where k = 1,2, 3, if the total
number of isoforms from gene g is k (the N; = 3 group contains all isoforms
from genes having 3 or more isoforms). As shown in Figure 1, there is decreased
variability in the Ny = 1 group, but increased variability in the others, due to
the relative increase in uncertainty inherent in estimating isoform expression
when multiple isoforms of a given gene are present. If this structure is not
accommodated, there is reduced power for identifying isoforms in the Ny =1
group (since the true variances in that group are lower, on average, than that
derived from the full collection of isoforms) as well as increased false discoveries
in the Ny = 2 and Ny, = 3 groups (since the true variances are higher, on
average, than those derived from the full collection). EBSeq directly models
differential variability as a function of IV, providing a powerful approach for
isoform level inference. As shown in Leng et al., 2012 [3], the model is also
useful for identifying DE genes. We will briefly detail the model in Section
and then describe the flow of analysis in Section [3|for both isoform and gene-level
inference.

2 The Model

2.1 Two conditions

We let Xgl = Xg.1,Xg;,2, .-, Xg;,5, denote data from condition 1 and chf =
X g (S14+1)s Xgi (S142)5 s Xg;,5 data from condition 2. We assume that counts
within condition C are distributed as Negative Binomial: Xg(’:,s|7”gi,sng ~
NB(rgi,s,qg) where

X i

Xgis+1g.s—1
P(Xgi,s|rg¢,qug;) = < 9i,Ss gi,$S >(1 _ ng;)Xgi,s (ng:)Tgi,s (1)
gi»S

and Mg,s =7gs(1— qg)/qg; (Ugcz,s)2 =7rgs(1— qg)/(qg)2~
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Figure 1: Empirical variance vs. mean for each isoform profiled in the mammary
carcinoma experiment detailed in the Case Study section of Leng et al., 2012
[B]. A spline fit to all isoforms is shown in red with splines fit within the
Ny =1, Ny =2, and Ny = 3 isoform groups shown in yellow, pink, and green,
respectively.

We assume a prior distribution on qg: qg\a,BNQ ~ Beta(a, fNs). The
hyperparameter « is shared by all the isoforms and 4Vs is N, specific (note this
is an index, not a power). We further assume that ry, s = ¢, ols, where 7y, ¢ is
an isoform specific parameter common across conditions and r4, s depends on
it through the sample-specific normalization factor [;. Of interest in this two
group comparison is distinguishing between two cases, or what we will refer to
subsequently as two patterns of expression, namely equivalent expression (EE)
and differential expression (DE):

Hy (EE) : qgl = qgg vs Hy (DE) : qgl #+ qgQ.
Under the null hypothesis (EE), the data X$¢% = X, X&2 arises from the

prior predictive distribution fév (X g 1,02y,

Beta(a + Zle Tg.s, BN + 25:1 Xg..s)

s
Ny (xC1,02y _ Xgis +7gis — 1
fO ( gi ) lg ( Xgi7s

Beta(a, BN9)
(2)
Alternatively (in a DE scenario), X512 follows the prior predictive distri-
bution leg (X5102):

A §he) = £l (XS £ (X5 (3)

9gi



Let the latent variable Z,, be defined so that Z,, = 1 indicates that isoform
g; is DE and Z,, = 0 indicates isoform g; is EE, and Z,, ~ Bernoulli(p). Then,
the marginal distribution of X§*“? and Z,, is

(1 =) fo " (XS1C2) + o (X51C?) (4)

gi
The posterior probability of being DE at isoform g; is obtained by Bayes’ rule:
Ng
pfi (X gc; 1702)
Ny (+C1,C2 Ny +C1,C2
(1-p)fy?(Xg ) +pfi (X, )

(5)

2.2 DMore than two conditions

EBSeq naturally accommodates multiple condition comparisons. For exam-
ple, in a study with 3 conditions, there are K=5 possible expression patterns
(P1,...,P5), or ways in which latent levels of expression may vary across condi-
tions:

P1: ¢C1 = qu —
P2: qgl = qu #q5°
P3: gt = qg° # 45
Pd: g5t # 457 = ¢S
P5: g0t #q57 # ¢5° and ¢S # ¢S

The prior predictive distributions for these are given, respectively, by:

g{\/g (XCl ,02, 03) févg (XCl ,C2, c3)

gy (XGHOHO) = fl (X o (XGP)
gé\fg( c1czc3> fO]Vq( 901,03) éVg(chiz)

ga " (XGHOE) = fo (XD fo7 (X

g5 " (XG0 = fo (XS Fo " (XE2) fo " (X§)

where fév ? is the same as in equation Then the marginal distribution in
equation [4] becomes:

Zpkg XCl C2, CS) (6)

where Zzzl pr = 1. Thus, the posterior probability of isoform g; coming from
pattern K is readily obtained by:

N .

PKIR® (chi1,c2,cs)

5 N,
Zk=1 Pr9y ’ (

X£1’02’CS) (7)



3 Quick Start

Before analysis can proceed, the EBSeq package must be loaded into the working
space:

> library(EBSeq)

3.1 Gene Level DE Analysis (Two Conditions)
3.1.1 Required input

Data: The object Data should be a G — by — S matrix containing the
expression values for each gene and each lane (sample), where G is the number
of genes and S is the number of lanes. These values should exhibit raw counts,
without normalization across samples. Counts of this nature may be obtained
from RSEM [4], Cufflinks [7] or other such pre-processing approaches.

Conditions: The object Conditions should be a Factor vector of length S
that indicates to which condition each sample belongs. For example, if there
are two conditions and three samples in each, S = 6 and Conditions may be
given by

as.factor(c("C1","C1","C1","C2","C2","C2"))

The object GeneMat is a simulated data matrix containing 10,000 rows of genes
and 10 columns of samples (a function to simulate such a dataset is detailed in
Section |4.1.1). The genes are named Gene_1, Gene_2 ...

> data(GeneMat)
> str(GeneMat)

num [1:10000, 1:10] 1879 24 3291 97 485 ...

- attr(*, "dimnames")=List of 2
..$ : chr [1:10000] "Gene_1" "Gene_2" "Gene_3" "Gene_4"
..$ : NULL

3.1.2 Library size factor

As detailed in Section[2] EBSeq requires the library size factor I, for each sample
s. Here, [, may be obtained via the function MedianNorm, which reproduces the
median normalization approach in DESeq [1].

> Sizes = MedianNorm(GeneMat)

If quantile normalization is preferred, [; may be obtained via the function
QuantileNorm.



3.1.3 Running EBSeq on gene counts

The function EBTest is used to detect DE genes. For gene-level data, we don’t
need to specify the parameter NgVector since there are no differences in N,
structure among the different genes. Here, we simulated the first five lanes to
be in condition 1 and the other five in condition 2, so define:
Conditions=as.factor(rep(c("C1","C2"),each=5))

sizeFactors is used to define the library size factor of each lane. It could be
obtained by summing up the total number of reads within each lane, Median
Normalization [I], scaling normalization [5], or some other such approach. These
in hand, we run the EM algorithm, setting the number of iterations to five via
maxround=5 for demonstration purposes. However, we note that in practice,
additional iterations may be required. Convergence should always be checked
(see Section for details). Please note this may take several minutes:

> EBOut = EBTest(Data = GeneMat, Conditions = as.factor(rep(c("C1",
+ "C2"), each = 5)), sizeFactors = Sizes, maxround = 5)

iteration 1 done
time 23.978
iteration 2 done
time 13.337
iteration 3 done
time 12.955
iteration 4 done
time 12.447
iteration 5 done
time 11.179

The posterior probabilities of being DE are obtained as follows, where PP is a
matrix containing the posterior probabilities of being EE or DE for each of the
10,000 simulated genes:

> PP = GetPPMat (EBOut)
> str(PP)

num [1:10000, 1:2] 0 0 0 0 O ...

- attr(*, "dimnames")=List of 2
..$ : chr [1:10000] "Gene_1" "Gene_2" "Gene_3" "Gene_4"
..$ : chr [1:2] "PPEE" "PPDE"

> head (PP)

PPEE PPDE
Gene_1 0.000000e+00 1
Gene_2 0.000000e+00 1
Gene_3 0.000000e+00 1
Gene_4 0.000000e+00 1
Gene_5 0.000000e+00 1
Gene_6 3.289292e-10 1



The matrix PP contains two columns PPEE and PPDE, corresponding to the pos-
terior probabilities of being EE or DE for each gene. PP may be used to form
an FDR-controlled list of DE genes with a target FDR of 0.05 as follows:

> DEfound = rownames (PP) [which(PP[, "PPDE"] >= 0.95)]
> str(DEfound)

chr [1:991] "Gene_1" "Gene_2" "Gene_3" "Gene_4" "Gene_5"

EBSeq found 991 DE genes in total with target FDR 0.05.

3.2 Isoform Level DE Analysis (Two Conditions)

3.2.1 Required inputs

Data: The object Data should be a I — by — S matrix containing the
expression values for each isoform and each lane, where I is the number of
isoforms and S is the number of lanes. Again, these values should exhibit raw
data, without normalization across samples.

Conditions: The object Conditions should be a vector with length S to
indicate the condition of each sample.

IsoformNames: The object IsoformNames should be a vector with length I
to indicate the isoform names.

IsosGeneNames: The object IsosGeneNames should be a vector with length
I to indicate the gene name of each isoform. (in the same order as
IsoformNames.)

IsoList contains 6,000 simulated isoforms. In which IsoList$IsoMat is a
data matrix containing 6,000 rows of isoforms and 10 columns of samples;
IsoList$IsoNames contains the isoform names; IsoList$IsosGeneNames con-
tains the names of the genes the isoforms belong to.

> data(IsoList)
> str(IsoList)

List of 3
$ IsoMat : num [1:6000, 1:10] 176 789 1300 474 1061 ...
..— attr(*, "dimnames")=List of 2
..$ : chr [1:6000] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"
..$ : NULL
$ IsoNames : chr [1:6000] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"
$ IsosGeneNames: chr [1:6000] "Gene_1" "Gene_2" "Gene_3" "Gene_4"

> IsoMat = IsoList$IsoMat
> str(IsoMat)



num [1:6000, 1:10] 176 789 1300 474 1061 ...

- attr(*, "dimnames")=List of 2
..$ : chr [1:6000] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"
..$ : NULL

> IsoNames = IsoList$IsoNames
> IsosGeneNames = IsoList$IsosGeneNames

3.2.2 Library size factor

Similar to the gene-level analysis presented above, we may obtain the isoform-
level library size factors via MedianNorm:

> IsoSizes = MedianNorm(IsoMat)

3.2.3 The N, vector

Since EBSeq fits rely on Ny, we need to obtain the IV, for each isoform. This can
be done using the function GetNg. The required inputs of GetNg are the isoform
names (IsoformNames) and their corresponding gene names (IsosGeneNames).

> NgList = GetNg(IsoNames, IsosGeneNames)
> IsoNgTrun = NgList$IsoformNgTrun
> IsoNgTrun[c(1:3, 1001:1003, 3001:3003)]

Iso_1_1 Iso_1_2 Iso_1_3 Iso_2_1 Iso_2_2 Iso_2_3 Iso_3_1 Iso_3_2 Iso_3_3
1 1 1 2 2 2 3 3 3

3.2.4 Running EBSeq on isoform counts

The EBTest function is also used to run EBSeq on isoform-level data. Below
we use b iterations to demonstrate. However, as in the gene level analysis, we
advise that additional iterations may be required in practice (see Section
for details).

> IsoEBOut = EBTest(Data = IsoMat, NgVector = IsoNgTrun, Conditions = as.factor(rep(c("C1",
+ "C2"), each = 5)), sizeFactors = IsoSizes, maxround = 5)

iteration 1 done
time 65.385
iteration 2 done
time 22.121
iteration 3 done
time 13.899
iteration 4 done
time 11.692
iteration 5 done
time 11.704



> IsoPP = GetPPMat (IsoEBOut)
> str(IsoPP)

num [1:6000, 1:2] 0 0 0 0 O ...

- attr(*, "dimnames")=List of 2
..$ : chr [1:6000] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"
..$ : chr [1:2] "PPEE" "PPDE"

> head (IsoPP)

PPEE PPDE
Iso_1_1 0 1
Iso_1_2 0 1
Iso_1_3 0 1
Iso_1_4 0 1
Iso_1_5 0 1
Iso_1_6 0 1

> IsoDE = rownames (IsoPP) [which(IsoPP[, "PPDE"] >= 0.95)]
> str(IsoDE)

chr [1:534] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4" "Iso_1_5"

We see that EBSeq found 534 DE isoforms at the target FDR of 0.05.

3.3 Working with more than two conditions

The object MultiGeneMat is a matrix containing 1,000 simulated genes with 6
samples: the first two samples are from condition 1; the second and the third
sample are from condition 2; the last two samples are from condition 3.

> data(MultiGeneMat)
> str(MultiGeneMat)

num [1:1000, 1:6] 411 1652 268 1873 768 ...

- attr(*, "dimnames")=List of 2
..$ : chr [1:1000] "Gene_1" "Gene_2" "Gene_3" "Gene_4"
..$ : NULL

In analyses where the data are spread over more than two conditions, the set of
possible patterns for each gene is more complicated than simply EE and DE. As
noted in Section [2], when we have 3 conditions, there are 5 expression patterns
to consider. In the simulated data, we have 6 samples, 2 in each of 3 conditions.
The function GetPatterns allows the user to generate all possible patterns given
the conditions. For example:

> Conditions = C(”Cl”, "Cl”, nc2", HC2I1’ ”C3H, ncsu)
> PosParti = GetPatterns(Conditions)
> PosParti



C1 C2 C3

Patternl 1 1 1
Pattern2 1 1 2
Patternd 1 2 1
Patternd 1 2 2
Pattern5 1 2 3

where the first row means all three conditions have the same latent mean ex-
pression level; the second row means C1 and C2 have the same latent mean
expression level but that of C3 is different; and the last row corresponds to the
case where the three conditions all have different latent mean expression lev-
els. The user may use all or only some of these possible patterns as an input
to EBMultiTest (more on this function presently). For example, if we were
interested in Patterns 1, 2, 4 and 5 only, we’d define:

> Parti = PosParti[-3, ]

> Parti

Cl1 C2 C3
Patternl 1 1 1
Pattern2 1 1 2
Patternd 1 2 2
Patternb6 1 2 3

Moving on to the analysis, MedianNorm or one of its competitors should be
used to determine the normalization factors. Once this is done, the formal test
is performed by EBMultiTest.

> MultiSize = MedianNorm(MultiGeneMat)
> MultiOut = EBMultiTest(MultiGeneMat, NgVector = NULL, Conditions = Conditions,
+ AllParti = Parti, sizeFactors = MultiSize, maxround = 5)

iteration 1 done

time 15.027

iteration 2 done

time 6.131

iteration 3 done

time 6.565

iteration 4 done

time 3.18099999999998
iteration 5 done

time 2.91400000000002

The posterior probobility of being in each pattern for every gene is obtained by
using the function GetMultiPP:

> MultiPP = GetMultiPP(MultiOut)
> names (MultiPP)
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(1] "pp" "MAP" "Patterns"

> MultiPP$PP[1:10, ]

Patternl Pattern2 Pattern4 Patternb
Gene_1 1.667196e-95 0.4474787 5.035574e-73 0.55252128
Gene_2 3.110967e-20 0.9697363 2.313379e-19 0.03026369
Gene_3 2.082947e-159 0.9679974 1.603355e-105 0.03200255
Gene_4 1.207559e-252 0.5357814 3.144834e-185 0.46421856
Gene_5 6.347984e-27 0.9371062 1.550532e-20 0.06289380
Gene_6 2.586284e-18 0.8383464 1.363798e-19 0.16165359
Gene_7 0.000000e+00 0.4467407 0.000000e+00 0.55325926
Gene_8 2.192617e-16 0.9850391 5.905463e-17 0.01496091
Gene_9 1.180902e-15 0.9453487 3.636282e-15 0.05465126
Gene_10 8.208183e-72 0.9219273 1.217895e-67 0.07807272

> MultiPP$MAP[1:10]

[1] "Patternb" "Pattern2" "Pattern2" "Pattern2" "Pattern2" "Pattern2"
[7] "Patternb" "Pattern2" "Pattern2" "Pattern2"

> MultiPP$Patterns

C1 C2 C3
Patternl 1 1 1
Pattern2 1 1 2
Patternd 1 2 2
Patternb5 1 2 3
where MultiPP$PP provides the posterior probobility of being in each pattern for
every gene. MultiPP$MAP provides the most likely pattern of each gene based

on the posterior probabilities. MultiPP$Patterns provides the details of the
patterns.
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4 More detailed examples

4.1 Gene Level DE Analysis (Two Conditions)
4.1.1 Simulating gene-level counts

The function GeneSimu may be used to simulate gene-level count data. As in
[6] and [2], the function assumes counts are distributed as Negative Binomial
with gene-specific mean in sample s and condition C' given by [ ,ug and variance
ls,ug(l + lsug%). We first generate 10,000 genes and 5 samples for each of two
conditions. Here we use DEGeneProp = 0.1 to define the DE gene percentage,
so that 10% of the genes will be generated as DE. The EE genes are simulated
as n§t = pS?. The DE genes are simualted as half u§* = §,uS? and half
uS? = 64uSt. We could define the DE genes to have constant §, equal to 4,
say, by setting DVDconstant = 4. This simulation scenario was considered in
[6] and [2]. Otherwise, the user may specify the DVDqt1 and DVDqt2 parameters
to get non-constant J, from the corresponding lower and upper quantiles of the
empirical d, values obtained from the data under investigation. (For example,
let DVDqt1=0.95 and DVDqt2=0.97. Then the §, will be randomly sampled from
95%-97% quantile of the empirical §, values.) To simulate the exact dataset in
Section [3.1] we set a specific seed.

> set.seed(13)

> GeneGenerate = GeneSimu(DVDconstant = 4, DVDqtl = NULL, DVDqt2 = NULL,
+ Conditions = rep(c("C1", "C2"), each = 5), NumofSample = 10,

+ NumofGene = 10000, DEGeneProp = 0.1, Phiconstant = NULL,

+ Phi.qt1 = 0.1, Phi.qt2 = 0.9, Meanconstant = NULL, OnlyData = T)
> GeneData = GeneGenerate$data
> GeneTrueDENames = GeneGenerate$TrueDE

The GeneSimu function is used to simulate a data matrix containing 10,000 rows
of genes and 10 columns of samples. The genes are named Gene_1, Gene_2 ...

> str(GeneData)

num [1:10000, 1:10] 1879 24 3291 97 485 ...

- attr(*, "dimnames")=List of 2

..$ : chr [1:10000] "Gene_1" "Gene_2" "Gene_3" "Gene_4"
..$ : NULL

where the first 10% of genes are simulated so that they are DE:

> str(GeneTrueDENames)

chr [1:1000] "Gene_1" "Gene_2" "Gene_3" "Gene_4" "Gene_5"

12



4.1.2 Running EBSeq on simulated gene counts

EBSeq is applied as described in Section

> Sizes =
> EBOut

MedianNorm(GeneData)

EBTest (Data

= GeneData, Conditions = as.factor(rep(c("C1",

+ "C2"), each = 5)), sizeFactors = Sizes, maxround = 5)

iteration
time 23.0
iteration
time 13.1
iteration
time 12.7
iteration
time 12.2
iteration

1 done
o7

2 done
13

3 done
28

4 done
32

5 done

time 10.945

> PP = GetPPMat (EBOut)

> str(PP)

num [1:10000, 1:2] 0 0O 0 O O ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:10000]

..$ : chr [1:2]

> head (PP

> DEfound
> str(DEf

chr [1:9

)

"Gene_1" "Gene_2" "Gene_3" "Gene_4"

n PPEE" IIPPDEII

PPEE PPDE

.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.289292e-10

e e

= rownames (PP) [which(PP[, "PPDE"] >= 0.95)]

ound)

91] "Gene_1"

"Gene_2" "Gene_3" "Gene_4" "Gene_5"

> sum(DEfound /injJ, GeneTrueDENames)

[1] 959

EBSeq found 991 DE genes for a target FDR of 0.05, and we see that 959 of

them were

true positives.
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4.1.3 Checking convergence

As detailed in Section |2| we assume the prior distribution of qf is Beta(a, §).
The EM algorithm is used for estimating the hyper-parameters a, 5 and the mix-
ture parameter p. The optimized parameters at each iteration may be obtained
as follows (recall we are using 5 iterations for demonstration purposes):

> EBOut$Alpha

[,1]
iterl 0.8442208
iter2 0.8451571
iter3 0.8440494
iter4 0.8441588
iter5 0.8441456

> EBOut$Beta

Ngi1
iterl 1.735640
iter2 1.762926
iter3 1.760836
iterd 1.760182
iter5 1.759134
> EBOut$P

[,1]

iterl 0.1804475
iter2 0.1409131
iter3 0.1348617
iterd4 0.1340951
iter5 0.1338376

In our case the differences between the 4th and 5th iteration are always less
than 0.001.

4.1.4 Checking the model fit and other diagnostics

As noted in Leng et al., 2012 [3], EBSeq relies on parametric assumptions that
should be checked following each analysis. The QQP function may be used to
assess prior assumptions. In practice, QQP generates the QQ plot of the empirical
q’s vs the simulated ¢’s from the Beta prior distribution with estimated hyper-
parameters (see Figure [2)).
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> par(mfrow = c(2, 2))
> QQEP (EBOut, name = "Gene Simulation")

Gene Simulation C1 Gene Simulation C2
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Figure 2: The QQ-plot for checking the assumption of a Beta prior as well as
the model fit using data from condition 1 and condition 2

Here we see no violation of the Beta assumption. Likewise, the DenNHist func-
tion may be used to check the density plot of empirical ¢’s vs the simulated ¢’s
from the fitted Beta prior distribution (see Figure [3)).
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> par(mfrow = c(2, 2))
> DenNHist (EBOut, name = "Gene Simulation")

Gene Simulation C1 Gene Simulation C2

o — Data o — Data
™ Fitted density «® Fitted density
2 o 2 o
. g "
o o o o
- -
= =
S T T T T 1 © T T T T 1
00 02 04 06 08 10 00 02 04 06 08 1.0
Q alpha=0.84 beta=1.76 Q alpha=0.84 beta=1.76

Figure 3: The density plot for checking the model fit using data from condition
1 and condition 2

4.2 Isoform Level DE Analysis (Two Conditions)
4.2.1 Simulating isoform-level counts

In order to simulate isoform-level data, the function IsoSimu may be used.
As in Section the function assumes counts are distributed as Negative
Binomial with isoform-specific mean in sample s and condition C given by [ ugc
and variance [4 ,ugi(l + 1 u?iqbgi). We first generate 6,000 isoforms and 5 samples
for each of two conditions. Here we use DEIsoProp = 0.1 to define the DE
isoform percentage, so that 10% of the isoforms will be generated as DE. The
EE isoforms are simulated as ugl = quiQ. The DE isoforms are simualted

as half pS! = 0g;u$? and half pS? = 6g;uSt. Here we use DVDqt1=0.95 and
DVDqt2=0.97 instead of using constant d4;. Then the d4;’s are randomly sampled
from the 95%-97% quantile of the empirical d,; values.

And we use NumofIso to define the number of isoforms in each N, group:

Here, we simulated 6,000 isoforms in total. The number of isoforms in N, =
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1,2, 3 groups are 1,000, 2,000 and 3,000, respectively.

> set.seed(13)
> IsoGenerate = IsoSimu(DVDconstant = NULL, DVDqtl =
+ Conditions = as.factor(rep(c("C1", "C2"), each

5)), NumofSample =
+ NumofIso = c¢(1000, 2000, 3000), DEIsoProp = 0.1, Phiconstant = NULL,
+ Phi.qtl1 = 0.25, Phi.qt2 = 0.75, OnlyData = T)

> str(IsoGenerate)

List of 2
$ data :List of 3
..$ : num [1:1000, 1:10] 176 789 1300 474 1061 ...
..— attr(x, "dimnames")=List of 2
..$ : chr [1:1000] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"
.. ..$ : NULL
..$ : num [1:2000, 1:10] 669 11 494 11 251
..— attr(x, "dimnames")=List of 2
..$ : chr [1:2000] "Iso_2_1" "Iso_2_2" "Iso_2_3" "Iso_2_4"
.. ..$ : NULL
..$ : num [1:3000, 1:10] 384 84 0 66 44 132 23 9 668 54 ...
..— attr(x, "dimnames")=List of 2
..$ : chr [1:3000] "Iso_3_1" "Iso_3_2" "Iso_3_3" "Iso_3_4"
.. ..$ : NULL
$ TrueDE: chr [1:600] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"

TrueDENames is a vector containing all the isoforms that are truly DE. Since
EBTest requires a matrix that contains all of the isoform expressions, we need
to convert the list IsoGenerate$data into a matrix:

> IsoMat = do.call(rbind, IsoGenerate$data)
> str(IsoMat)

num [1:6000, 1:10] 176 789 1300 474 1061 ...

- attr(*, "dimnames")=List of 2
..$ : chr [1:6000] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"
..$ : NULL

4.2.2 The N, vector

Since EBSeq fits rely on Vg, we need to obtain the N, for each isoform. This can
be done using the function GetNg. The required inputs of GetNg are the isoform
names (IsoformNames) and their corresponding gene names (IsosGeneNames),
described above. In the simulated data, we assume that the isoforms in the
Ny =1 group belong to genes Gene_1, ... , Gene_1000; The isoforms in the
Ny = 2 group belong to genes Gene_1001, ..., Gene_2000; and isoforms in
the N, = 3 group belong to Gene_2001, ..., Gene_3000.

> IsoNames = rownames (IsoMat)
> str(IsoNames)
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chr [1:6000] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4" "Iso_1_5"

> GenelNames = paste("Gene", c(1:3000), sep = "_")

> IsosGeneNames = c(GeneNames[1:1000], rep(GeneNames[1001:2000],
+ each = 2), rep(GeneNames[2001:3000], each = 3))

> NgList = GetNg(IsoNames, IsosGeneNames, TrunThre = 3)

> names (NgList)

[1] "GeneNg" "GeneNgTrun" "IsoformNg" "IsoformNgTrun"

> IsoNgTrun = NgList$IsoformNgTrun
> IsoNgTrun[c(1:3, 1001:1003, 3001:3003)]

Iso_1_1 Iso_1_2 Iso_1_3 Iso_2_1 Iso_2_2 Iso0_2_3 Iso_3_1 Iso_3_2 Iso_3_3
1 1 1 2 2 2 3 3 3

GetNg contains 4 vectors. GeneNg (IsoformNg) provides the number of iso-
forms within each gene (within each isoform’s host gene). GeneNgTrun (IsoformNgTrun)
provides the truncated N, values. The defalt truncation threshold is 3, which
means the values in GeneNg (IsoformNg) who are greater than 3 will be changed
to 3 in GeneNgTrun (IsoformNgTrun). We use 3 in the case studies since the
number of isoforms with N, larger than 3 is relatively small and the small sam-
ple size may induce poor parameter fitting if we treat them as separate groups.
In practice, if there is evidence that the Ny = 4,5,6... groups should be treated
as separate groups, a user can change TrunThre to define a different truncation
threshold.

4.2.3 Using mappability ambiguity clusters instead of the N, vector
when the gene-isoform relationship is unknown

While working with a de-novo assembled transcriptome, in which case the gene-
isoform relationship is unknown, a user can use read mapping ambiguity clus-
ter information instead of Ng, as provided by RSEM [] in the output file
output_name.ngvec. The file contains a vector with the same length as the
total number of transcripts. Each transcript has been assigned to one of 3 levels
(1, 2, or 3) to indicate the mapping uncertainty level of that transcript. A user
can read in the mapping ambiguity cluster information using;:

> IsoNgTrun = scan(file = "output_name.ngvec", what = 0, sep = "\n")

More details on using the RSEM-EBSeq pipeline on de novo assembled transcrip-
tomes can be found at http://deweylab.biostat.wisc.edu/rsem/README.
html#de.

4.2.4 Running EBSeq on simulated isoform counts

EBSeq can be applied as described in Section
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> IsoSizes = MedianNorm(IsoMat)
> IsoEBOut EBTest (Data = IsoMat, NgVector = IsoNgTrun, Conditions
+ "C2"), each = 5)), sizeFactors = IsoSizes, maxround = 5)

iteration 1 done
time 64.404
iteration 2 done
time 21.936
iteration 3 done
time 13.845
iteration 4 done
time 11.87
iteration 5 done
time 11.873

> IsoPP = GetPPMat (IsoEBOut)
> str(IsoPP)

num [1:6000, 1:2] 0 0 0 0 O ...

- attr(*, "dimnames")=List of 2
..$ : chr [1:6000] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4"
..$ : chr [1:2] "PPEE" "PPDE"

> IsoDE = rownames (IsoPP) [which(IsoPP[, "PPDE"] >= 0.95)]
> str(IsoDE)

chr [1:534] "Iso_1_1" "Iso_1_2" "Iso_1_3" "Iso_1_4" "Iso_1_5"
> sum(IsoDE }inj, IsoGenerate$TrueDE)
[1] 507

We see that EBSeq found 534 DE isoforms at a target FDR of 0.05; 507 of those
were true positives.

4.2.5 Checking convergence

For isoform level data, we assume the prior distribution of qgci is Beta(a, BN9).
As in Section the optimized parameters at each iteration may be obtained
as follows (recall we are using 5 iterations for demonstration purposes):

> IsoEBOut$Alpha

[,1]
iterl 0.6964958
iter2 0.7056876
iter3 0.7036317
iter4 0.7040022
iterb5 0.7032276
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> IsoEBOut$Beta

Ngi1 Ng2 Ng3
iterl 1.642912 2.261051 2.654820
iter2 1.695865 2.376032 2.834243
iter3 1.693549 2.367979 2.827887
iter4d 1.692093 2.370663 2.835483
iter5 1.692036 2.363139 2.826236

> IsoEBOut$P

[,1]
iterl 0.2072478
iter2 0.1590444
iter3 0.1473788
iter4 0.1442685
iter5 0.1430039

Here we have 3 f’s in each iteration corresponding to gNs=!, pNo=2 gNs=3
We see that parameters are fixed within 1072 or 1073, In practice, we require
changes less than 103 to declare convergence.

4.2.6 Checking the model fit and other diagnostics

In Leng et al., 2012[3], we showed the mean-variance differences across different
isoform groups on multiple data sets. In practice, if it is of interest to check
differences among isoform groups defined by truncated N, (such as those shown
here in Figure 1), the function PolyFitValue may be used. The following code
generates the three panels shown in Figure [4] (if condition 2 is of interest, a user
could change each C1 to C2.):
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> par(mfrow = c(2, 2))

> PolyFitValue = vector("list", 3)

> for (i in 1:3) PolyFitValue[[i]] = PolyFitPlot (IsoEBOut$CiMean[[i]],
+ IsoEBOut$C1EstVar[[i]], 5)
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Figure 4: The mean-variance fitting plot for each Ng group

Superimposing all N, groups using the code below will generate the figure
(shown here in Figure [5]), which is similar in structure to Figure 1:
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> PolyAll = PolyFitPlot (unlist(IsoEBOut$CiMean), unlist(IsoEBOut$ClEstVar),
+ 5)
> lines(1log10(IsoEBOut$C1iMean[[1]] [PolyFitValue[[1]]$sort]), PolyFitValue[[1]]$fit[PolyFitVe
+ col = "yellow", 1wd = 2)
> lines(log10(IsoEBOut$C1iMean([2]] [PolyFitValue[[2]]$sort]), PolyFitValue[[2]]$fit[PolyFitV:
+ col = "pink", lwd = 2)
> lines(logl10(IsoEBOut$CiMean[[3]] [PolyFitValue[[3]]$sort]), PolyFitValue[[3]]$fit[PolyFitV:
+ col = "green", lwd = 2)
> legend("topleft", c("All Isoforms", "Ng = 1", "Ng = 2", "Ng = 3"),
+ col = c("red", "yellow", "pink", "green"), lty = 1, lwd = 3,
+ box.lwd = 2)
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Figure 5: The mean-variance plot for each Ng group

To generate a QQ-plot of the fitted Beta prior distribution and the qb’s within
condition, a user may use the following code to generate |§| panels (as in the
gene-level analysis):
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> par(mfrow = c(2, 3))
> QQ@P(IsoEBOut, name = "Isoforms", GroupName = paste('"Ng = ", c(1:3),
+ sep = "n))
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Figure 6: The QQ-plot of the fitted prior distribution within each Ng group

And in order to produce the plot of the fitted Beta prior densities and the

histograms of qb’s within each condition, the following may be used (it generates
Figure [7):
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> par(mfrow

= c(2, 3))

> DenNHist (IsoEBOut, name

+ c(1:3), sep = ""))

Density

Density

Figure 7: The prior distribution fitting within each Ng group
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4.3 Working with more than two conditions

As described in Section the function GetPatterns allows the user to gen-
erate all possible patterns given the conditions. To visualize the patterns, the

function PlotPattern may be used.

As described, if we were interested in Patterns 1, 2, 4 and 5 only, we’d define:

> Parti = PosParti[-3, ]

> Parti

Patterni
Pattern2
Pattern4
Patternb

This established, we simulate 1,000 genes with 6 samples. The proportions of

C1 C2 C3
1 1 1
1 1 2
1 2 2
1 2 3
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> Conditions = C("Cl", ”Cl”, nc2u, IIC2H’ nc3u, uc3n)
> PosParti = GetPatterns(Conditions)
> PosParti

Cl1 C2 C3
Patternl 1 1 1
Pattern2 1 1 2
Pattern3 1 2 1
Patternd 1 2 2
Patternb6 1 2 3

> PlotPattern(PosParti)

Pattern5

Pattern4

Pattern3

Pattern2

Patternl

Figure 8: All possible patterns

genes in each of our four patterns are (0.7,0.1,0.1,0.1):

> set.seed(13)
> MultiData = GeneMultiSimu(Conditions = Conditions, AllParti = Parti,

+ NumofSample = 6, NumofGene = 1000, DEGeneProp = c(0.7, 0.1,
+ 0.1, 0.1), DVDqtl = 0.98, DVDqt2 = 0.99, Phi.qtl = 0.25,
+ Phi.qt2 = 0.75)
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> str(MultiData)

List of 2
$ data : num [1:1000, 1:6] 411 1652 268 1873 768 ...
..— attr(*, "dimnames")=List of 2
..$ : chr [1:1000] "Gene_1" "Gene_2" "Gene_3" "Gene_4"
..$ : NULL
$ Patterns: Named chr [1:1000] "Pattern2" "Pattern2" "Pattern2" "Pattern2"
..— attr(*, "names")= chr [1:1000] "Gene_1" "Gene_2" "Gene_3" "Gene_4"

MultiData$data provides the expression matrix. MultiData$Patterns pro-
vides the true pattern to which each gene belongs.

Moving on to the analysis, MedianNorm or one of its competitors should be
used to determine the normalization factors. Once this is done, the formal test
is performed by EBMultiTest.

> MultiSize = MedianNorm(MultiData$data)
> MultiOut = EBMultiTest(MultiData$data, NgVector = NULL, Conditions = Conditions,
+ AllParti = Parti, sizeFactors = MultiSize, maxround = 5)

iteration 1 done

time 15.117

iteration 2 done

time 6.08600000000001
iteration 3 done

time 6.50399999999996
iteration 4 done

time 3.15100000000001
iteration 5 done

time 2.89600000000002

The posterior probability of being in each pattern for every gene is obtained
using the function GetMultiPP:

> MultiPP = GetMultiPP(MultiOut)
> names (MultiPP)

(1] "pp" "MAP" "Patterns"

> MultiPP$PP[1:10, ]

Patternl Pattern2 Pattern4 Patternb
Gene_1 1.667196e-95 0.4474787 5.035574e-73 0.55252128
Gene_2 3.110967e-20 0.9697363 2.313379e-19 0.03026369
Gene_3 2.082947e-159 0.9679974 1.603355e-105 0.03200255
Gene_4 1.207559e-252 0.5357814 3.144834e-185 0.46421856
Gene_5 6.347984e-27 0.9371062 1.550532e-20 0.06289380
Gene_6 2.586284e-18 0.8383464 1.363798e-19 0.16165359
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Gene_7  0.000000e+00 0.4467407 0.000000e+00 0.55325926
Gene_8  2.192617e-16 0.9850391 5.905463e-17 0.01496091
Gene_9 1.180902e-15 0.9453487 3.636282e-15 0.05465126
Gene_10 8.208183e-72 0.9219273 1.217895e-67 0.07807272

> MultiPP$MAP[1:10]

[1] "Patternb" "Pattern2" "Pattern2" "Pattern2" "Pattern2" "Pattern2"
[7] "Pattern5" "Pattern2" "Pattern2" "Pattern2"

> MultiPP$Patterns

Cl1 C2 C3
Patternl 1 1
Pattern2 1 1
Patternd 1 2
Patternb 1 2

wWw NN -

where MultiPP$PP provides the posterior probobility of being in each pattern for
every gene. MultiPP$MAP provides the most likely pattern of each gene based
on the posterior probabilities. MultiPP$Patterns provides the details of the
patterns.

> sum(MultiPP$MAP == MultiData$Patterns)
[1] 918

For this simulated data set with 3 conditions, EBSeq identified the correct ex-
pression pattern 91.8% of the time.
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