

Using Galaxy for NGS Analysis in a collaborative environment

2nd Swiss Galaxy Workshop October 1, 2014, Bern

Hans-Rudolf Hotz (hrh@fmi.ch)
Friedrich Miescher Institute for Biomedical Research
Basel, Switzerland

Friedrich Miescher Institute

- funded by the Novartis Research Foundation
- affiliated institute of Basel University

325 employees

(incl. 97 PhD students, 103 Post Docs)

Epigenetics

Cancer

Neurobiology

(7 research groups)

(8 research groups)

(8 research groups)

Technology Platforms

Computational Biology – Cell Sorting – Imaging and Microscopy – *C. elegans* Functional Genomics – Histology – Mass Spectrometry – Protein Structure

The Computational Biology platform is providing support for....

the "average" lab scientist, using computers to:

draw plasmids
do BLAST searches
use Excel

the "modern" lab scientist, using computers to:

analyze NGS data with R/Bioconductor scripts

The Computational Biology platform is providing support for....

the "average" lab scientist, using computers to:

the "modern" lab scientist, using computers to:

draw plasmids
do BLAST searches
use Excel

analyze NGS data with R/Bioconductor scripts

The Computational Biology platform is providing support for....

the "average" lab scientist, using computers to:

the "modern" lab scientist, using computers to:

draw plasmids
do BLAST searches
use Excel

analyze NGS data with R/Bioconductor scripts

http://galaxyproject.org/

why are we using Galaxy

- open source software / no license fee
- it provides a standard set of Bioinformatics tools
- we can add our own scripts and tools
- the Galaxy community is huge
- a local installation is simple to set up
- it is flexible (we can adjust it to our needs)

in use at the FMI since 2007

Galaxy as a stepping stone

the "average" lab scientist, using computers to:

draw plasmids
do BLAST searches
use Excel

the "modern" lab scientist, using computers to:

analyze NGS data with R/Bioconductor scripts

http://galaxyproject.org/

Galaxy as a stepping stone

for learning Bioinformatics....

the "average" lab scientist, using computers to:

the "modern" lab scientist, using computers to:

draw plasmids do BLAST searches use Excel

analyze NGS data with R/Bioconductor scripts

http://galaxyproject.org/

n

Friedrich Miescher Institute for Biomedical Research

... which is more than pressing a red button

quantification and analysis of NGS reads

pre-processing

alignments

counts
wig files
QC reports
methylation

quantification and analysis of NGS reads with Galaxy

pre-processing

alignments

results

counts
wig files
QC reports
methylation

everything is possible in Galaxy

as long as you can run the tool on the command line, you can incorporate it into Galaxy.

quantification and analysis of NGS reads with Galaxy

pre-processing

reads ____

alignments

counts
wig files
QC reports
methylation

everything is possible in Galaxy

as long as you can run the tool on the command line, you can incorporate it into Galaxy.

- data is hidden in Galaxy
- data gets duplicated

hidden in Galaxy

reads

fastq file

align reads

BAM file

results

wig file

hidden in Galaxy, not really.....

- export Galaxy results
- sharing Galaxy histories
- Galaxy pages

data duplication, not really.....

- Galaxy data libraries

hidden in Galaxy, not really.....

- export Galaxy results
- sharing Galaxy histories
- Galaxy pages

data duplication, not really.....

- Galaxy data libraries

.... once you have started to work on the command line, you don't want to go back, no matter how brilliant Galaxy is

Friedrich Miescher Institute for Biomedical Research

a two-way stepping stone?

the "average" lab scientist, using computers to:

the "modern" lab scientist, using computers to:

draw plasmids
do BLAST searches
use Excel

analyze NGS data with R/Bioconductor scripts

http://galaxyproject.org/ ^ ?

collaboration?

storing data outside of Galaxy

- raw data (fastq) files are in central/group specific repositories
- the Galaxy 'aligner' stores the BAM file in a group specific repository and creates just a 'log file' as history item
- the Galaxy 'count' tool uses the 'log file' as input

this is not really best (Galaxy) practice, but it allows to collaborate with non-Galaxy usersand reproducibility is still guaranteed

quantification and analysis of NGS reads with Galaxy

The (new) FMI NGS pipeline

Bioconductor package: Quas R (Quantification and Analysis of Short Reads)

- package that provides an end-to-end analysis solution for tag counting applications
- ships with the aligners Bowtie and SpliceMap
- creates alignments from within R
- provides an additional layer of abstraction on top of pre-existing tools in Bioconductor
- makes use of Bioconductor genome and annotation packages

QuasR parts

raw files: QuasR_rna_1_1.fastq.gz

QuasR_rna_1_2.fastq.gz

align with Bowtie to: hg19

Bioc package: BSgenome. Hsapiens. UCSC. hg19

qAlign("samples.txt", "BSgenome.Hsapiens.UCSC.hg19")

raw counts for: UCSC known genes

Bioc package: TxDb. Hsapiens. UCSC. hg19. knownGene

qCount(project, "TxDb. Hsapiens. UCSC. hg19.knownGene")

define samples: samples.txt

```
FileName SampleName
/group_data/example/raw/QuasR_rna_1_1.fastq.gz sampleA
/group_data/example/raw/QuasR_rna_1_2.fastq.gz sampleB
```

R command to create alignments:


```
> project <- qAlign("samples.txt",</pre>
              "BSgenome.Hsapiens.UCSC.hg19",
              alignmentsDir="/group data/example/bam/")
Loading required package: Biostrings
Loading required package: XVector
alignment files missing - need to:
    create 2 genomic alignment(s)
will start in ..9s..8s..7s..6s..5s..4s..3s..2s..1s
Testing the compute nodes...OK
Loading QuasR on the compute nodes...OK
Available cores:
nodeNames
xenon1.fmi.ch
Performing genomic alignments for 2 samples. See progress in
the log file:
/tmp/freiburg_example/QuasR_log_4ba87ed8d616.txt
Genomic alignments have been created successfully
```

```
> project
Project: qProject
Options : maxHits : 1
            paired : no
            splicedAlignment: FALSE
            bisulfite : no
            snpFile : none
Aligner : Rbowtie v1.4.5 (parameters: -m 1 --best --strata)
Genome
          : BSgenome. Hsapiens. UCSC. hg19 (BSgenome)
Reads
          : 2 files, 2 samples (fastq format):
  1. QuasR rna 1 1.fastq.gz sampleA (phred33)
  2. QuasR rna 1 2.fastq.gz sampleB (phred33)
Genome alignments: directory: /group data/example/bam
  1. QuasR rna 1 1 4ba8447d4806.bam
  2. QuasR rna 1 2 4ba819e654f5.bam
Aux. alignments: none
>
```

```
> library(TxDb.Hsapiens.UCSC.hg19.knownGene)
> counts <- qCount(project,TxDb.Hsapiens.UCSC.hg19.knownGene)</pre>
extracting gene regions from TranscriptDb...done
counting alignments...done
collapsing counts by query name...done
>
> dim(counts)
[1] 23459
>
> counts[counts[,"sampleA"]>0,]
      width sampleA sampleB
126792 2792
              31
                     31
51150 5082 324 324
55845 1176 820 794
                     41
6201 3286 30
7293 1751 17 16
7428 4560
            135
                      140
                        9
8784
       1388
>
```

and now with Galaxy

FMI: QuasR

QUANTIFY AND ANNOTATE SHORT READS IN R

select sequence files select sequence files for analysis

<u>preprocess Reads</u> - sequence read truncation and/or adapter removal

<u>qAlign</u> - alignment of sequence reads

alignment statistics – report the number of alignments for a qProject

quality control - generate a Quality Control-Report

qCount - counts alignments

<u>qProfile</u> - count alignments per position

<u>qExportWig</u> - export alignment covearge as wiggle files

rscripts executing the QuasR steps

select files and assign sample names

Project name:	
Freiburg_example	
descriptive name for your project (allowed characters: a-z A-	-Z 0-9 _)
Sample/Condition Names:	
WT,WT,MUT,MUT	
Please provide comma (',') separated sample/condition name files (in the order they appear in the list below). Use only the characters: a-z A-Z 0-9 _ (example: WT,WT,Mut,Mut)	
Choose files:	
example	
QuasR_chip_1_1.fastq.gz QuasR_chip_1_1	
QuasR_chip_2_1.fastq.gz QuasR_chip_2_1	
QuasR_mirna_1.fa QuasR_mirna_1	
QuasR_rna_1_1.fastq.gz QuasR_rna_1_1	
QuasR_rna_1_2.fastq.gz QuasR_rna_1_2	
QuasR_rna_2_1.fastq.gz QuasR_rna_2_1	
QuasR_rna_2_2.fastq.gz QuasR_rna_2_2	
Select one or several sequence files for this sample/conditio	n.

select files and assign sample names

FileName	SampleName
/work/gbioinfo/deepSeqRepos/raw_temp/srf_BSSE/QuasR_rna_1_1.fastq.gz	WT
/work/gbioinfo/deepSeqRepos/raw_temp/srf_BSSE/QuasR_rna_1_2.fastq.gz	WT
/work/gbioinfo/deepSeqRepos/raw_temp/srf_BSSE/QuasR_rna_2_1.fastq.gz	MUT
/work/gbioinfo/deepSeqRepos/raw_temp/srf_BSSE/QuasR_rna_2_2.fastq.gz	MUT

start alignments

qAlign (version 1.0.3quasr)
Sample File:
1: Freiburg_example
set of sequence files created by the 'select sequence files' or 'preprocess Reads' tools
Reference Genome:
BSgenome Hsapiens (UCSC hg19) \$
all reads will be mapped to this reference
Auxiliary target(s):
Select All Unselect All
☐ phiX174
□ bacteriophage lambda
☐ Ecoli (multiple_strains)
☐ ERCC92 spike in controls
optional target sequences; used for reads that do not map to the reference genome
Spliced Alignment:
if checked, spliced alignments (containing intron-gaps) will be generated; only for reads >= 50 nucleotides!
maximum number of hits:
1 ‡
sets the maximum number of allowed mapping positions per read (see below for details)
Comment:
You may add some comment to your project (optional).
Execute

qProject

QuasR qProject

generated Tue Jul 8 16:01:10 2014 by hansrudolf.hotz@fmi.ch

Project: Freiburg_example
Options: maxHits: 1

paired : no

splicedAlignment: FALSE

bisulfite : no

snpFile : none

Aligner: Rbowtie v1.4.0 (parameters: -m 1 --best --strata)
Genome: BSgenome.Hsapiens.UCSC.hg19 (BSgenome)

Reads : 4 files, 2 samples (fastq format):

- 1. QuasR_rna_1_1.fastq.gz WT (phred33)
- QuasR_rna_1_2.fastq.gz WT (phred33)
- QuasR_rna_2_1.fastq.gz MUT (phred33)
- QuasR_rna_2_2.fastq.gz MUT (phred33)

Genome alignments: directory: /group_data/example/bam

- 1. QuasR rna 1 1 4ba8447d4806.bam
- 2. QuasR_rna_1_2_4ba819e654f5.bam
- 3. QuasR_rna_2_1_4ec87bab31f6.bam
- 4. QuasR_rna_2_2_4ec8765b0838.bam

HII

qCount

qCount

126668	2529	0	0	History		C	٥	
126669	6183	0	0					
126695	1803	0	0	Freiburg_20140710				
1267	5222	0	0	426.6 KB	8	•		
126731	5673	0	0		d (results)	1.000	-	
126755	1908	0	0	3: qCounts of qProject of	1		×	
126767	4049	0	0	Freiburg example				
126789	2135	0	0	2: qProject of	1		×	
126792	2792	62	344	Freiburg example				
1268	6022	0	0	1: Freiburg example				
126820	3007	0	0	1. Freiburg example	•	9	×	
126823	1368	0	0					
126859	5851	0	0					
126868	3229	0	0					

redo on command line

samples.2.txt

```
FileName SampleName

/group_data/example/raw/QuasR_rna_1_1.fastq.gz sampleA

/group_data/example/raw/QuasR_rna_1_2.fastq.gz sampleB

/group_data/example/raw/QuasR_rna_2_1.fastq.gz sampleC

/group_data/example/raw/QuasR_rna_2_2.fastq.gz sampleD
```

redo on command line

```
> project2 <- qAlign("samples.2.txt",</pre>
                "BSgenome. Hsapiens. UCSC. hg19",
+
                alignmentsDir="/group data/example/bam/")
+
all necessary alignment files found
>
> alignments(project2)
$genome
                             FileName SampleName
1 .../QuasR rna 1 1 4ba8447d4806.bam sampleA
2 .../QuasR rna 1 2 4ba819e654f5.bam sampleB
3 .../QuasR rna 2 1 4ec87bab31f6.bam sampleC
4 .../QuasR rna 2 2 4ec8765b0838.bam sampleD
$aux
data frame with 0 columns and 0 rows
```

Using Galaxy for NGS Analysis in a collaborative environment

the "average" lab scientist, using Galaxy

the "modern" lab scientist, using R/Bioconductor

The same raw data is used in both procedures and the alignments will not be generated twice.

Acknowledgment

Michael Stadler Christian Hundsrucker

Anita Lerch Tim Roloff Maria Florescu

Dimos Gaidatzis Stefan Grzybek Lukas Burger

and all the people from the "Galaxy Communtiy"

http://www.bioconductor.org/packages/release/bioc/html/QuasR.html