Modelling molecular heterogeneity between individuals and single cells

GCC 2015

Oliver Stegle EMBL, European Bioinformatics Institute

Heterogeneity between individuals and single cells

variation of interest

confounding

single-cell variation

genetic associations with phenotype

population variation

differentiation processes

UK human iPS cell consortium: genotype to phenotype

- Discover how
 - genetic variation affects cellular function
 - genetic lesions lead to disease phenotypes
- In so doing, create an open access resource for the wider biomedical community:
 - HapMap-like consent for ~500 healthy normals
 - Controlled access for ~500 disease samples

www.hipsci.org

Phil Beales, Ewan Birney, Laura Clarke, Daniel Gaffney, Angus Lamond, Richard Durbin, Fiona Watt

Multi-omics association genetics

Multi-modal data integration across molecular layers

Multi-model association genetics: statistical challenges and opportunities

- **Challenge**: Large-scale multiple testing problem:
 - Need to consider potentially millions of loci and adjust for multiple testing.
 - Account for confounding
 - Need appropriate corrections (e.g. False Discovery Rate)
 - Scalability to large cohorts
- Win: Large dataset allow to test modeling assumptions / fit better models
 - Inference of confounding structures
 - Not possible before large-scale hypothesis testing/large datasets
 - More power due to large datasets
 - Gain in power by joint analysis of multiple traits

N=10

ATGACCTG**A**AACTGGGGGGA**C**TGACGTG**G**AACGGT ATGACCTG**C**AACTGGGGGGA**C**TGACGTG**C**AACGGT ATGACCTG**C**AACTGGGGGGA**C**TGACGTG**C**AACGGT ATGACCTG**A**AACTGGGGGGA**T**TGACGTG**G**AACGGT ATGACCTG**C**AACTGGGGGGA**T**TGACGTG**C**AACGGT ATGACCTG**C**AACTGGGGGGA**T**TGACGTG**C**AACGGT

P=10⁶

Population structure (genetic)

LINEAR MODEL

NOISE

 $oldsymbol{\psi} \sim \mathcal{N}\left(oldsymbol{0}, \sigma_{e}^{2}
ight)$

Flowering in A. thaliana

Flowering in A. thaliana

Multi-modal data integration across molecular layers

Association genetics with high-dimensional molecular phenotypes

EMBL-EBI

ranslation

challenge:

- multiple testing
- non-genetic sources of variation

Association genetics with high-dimensional phenotypes

Linear mixed models to account for sample-to-sample covariance

Confounding factors: genetic and non-genetic structure

Confounding factors: genetic and non-genetic structure

Single marker genetic mapping

Nature, Lappalainen et al. 2013

Confounding factors: genetic and non-genetic structure

>non-genetic (batch/env) >genetic confounding (population structure)

Extending linear mixed models: beyond single-SNP single phenotype analyses

- Statistical challenges in high-dimensional association genetics
 - Normalization and scaling of quantitative trail Fusi et al., Nat Comm (2014)
 - Accounting for epistasis and non-linear genetic interactions Stephan et al., Nat Comm (2015)
 - Joint modeling of multiple traits and variants

Casale et al., Nat Meth (2015)

1

Listgarten et al. Bioinformatics (2013)

outcomes

Casale et al., Nat Meth (2015)

mtSet: aggregation across traits and causal variants

Challenge: Cubical scaling means such an algorithm is impractical for even moderately-size datasets!

Efficient inference for large-scale GWAS

(human chrom20, 3,975 set tests for 4 traits)

Summary so far

- Linear mixed models enable accounting for sample heterogeneity in genetic analyses
 - genetic (population structure): reduces false positives
 - non-genetic (batch, environment): increases power
- Scalability to large datasets
- Joint modeling of multiple (correlated) traits and multiple causal variants

Accounting for heterogeneity between individuals and single-cells

DNA

mRNA

proteins

organ-level phenotypes

transcription

translation

 $(\bar{y}_{1,\cdot})$

Statistical genetics

- ► Software (LIMIX)¹
- Phenotype normalisation²
- Modelling epistatic relationships³
- Joint modelling of correlated traits⁴

Molecular heterogeneity

Genetics of gene expression
 Causality⁵

ATGACCTGAAACTGGGGGACTGACGTGAACGG ATGACCTGCAACTGGGGGACTGACCTGCAACGGT ATGACCTGCAACTGGGGGACTGACGTGCAACGGT ATGACCTGAAACTGGGGGATGACGTGGCAACGG

- Human iPS biology
 Drosophila/yeast/plant genetics
 Cancer
- Drug susceptibility screens

4.Casale & Rakitsch et al., Nat Meth (2015)5.Gagneur et al. PLoS Genet (2013)6.Buettner et al., Nat BioTech (2015)

single-cell heterogeneity

- Modelling heterogeneity in scRNA-Seq⁶
- Single cell DNA methylation profiling

Single-cell RNA-Seq

- Conventional RNA-Seq profiles are obtained from a pool of typically ~100,000+ cells.
- Using single-cell RNA-sequencing technologies, we can now assay RNA abundance in single cells.

- novel variation between cells: cell type composition, differentiation
- additional (confounding) expression heterogeneity: cell cycle, apoptosis, ...

Fluidigm C1®

Cell cycle masks differentiation processes in single-cell RNA-Seq

 Observed expression profiles do not enable recovering of the differentiation process.

EMBL-EBI

between cell cycle genes

and non-cycle genes

Gene expression heterogeneity is not new...

EMBL-EBI 🌡

Single-cell latent variable model (scLVM)

- Random effect model for cell cycle effects. Two-stage approach:
 - 1. Estimate a cell-cell

Florian Kedar Buettner Natarajan

Estimation of cell-cycle induced

Estimating the cell cycle covariance

+

cell cycle covariance

 $\delta_b \mathbf{I}$

- Reconstruct cell cycle from the observed expression data
- Use known annotated cell cycle gene set
- Employ latent variable modeling to reconstruct a cell cycle factor (X)

 $\mathbf{Y}_{\mathrm{cc}} \sim \left[\begin{array}{c} \mathcal{N}(\mathbf{0} \mid \mathbf{0}) \right]$

g

Technical noise requires special attention

- Large proportions of technical variability due to low quantities of starting material
- Estimation of technical noise
 - Mean/variance fit from ERCC spike ins
 - Extrapolation to genome-wide genes
 - 7,073 highly variable genes

Brennecke et al. 2013

Decomposing sources of gene expression variation

- Variance decomposition of gene expression, considering
 - cell cycle (using estimated covariance)
 - residual biological variability
 - technical noise (estimated via spike-ins)

$$\mathbf{Y}_{g} = \boldsymbol{\mu} \mathbf{I} + \boldsymbol{\alpha} \mathbf{u}_{cc} + \boldsymbol{\delta}_{b} \mathbf{u}_{b} + \mathbf{u}_{n}$$

$$N(0, \boldsymbol{\mu}) N(0, \boldsymbol{\mu}) N(0, \boldsymbol{\mu})$$

$$N(0, \boldsymbol{\mu}) N(0, \boldsymbol{\mu}) N(0, \boldsymbol{\mu})$$

$$N(0, \boldsymbol{$$

Model validation on mouse ESCs

 To test our model, we used single-cell RNA-Seq data generated from ~300 ES cells collected at different stages of the cell cycle

- scLVM accurately estimates variability due to the cell cycle.
- Cell cycle effects are not visible on the model residuals.

Application to T-cell differentiation

- Focus on cells being differentiated in vitro from the naïve state towards the Th2 cell type
- 96 cells transcription profiled using the Fluidigm C1 system

Dissecting the sources of transcriptional variation

Technical noise

For 27% of the genes, variation of expression can be entirely explained by the (technical) null variability.

Cell-cycle

For 42% of the genes, >30% of the observed variance is explained by the cell cycle state.

The impact of cell cycle on gene-gene correlations

Gene-gene correlations (adjusted for cell cycle)

Gene-gene correlations (unadjusted)

GO.ID Term Annotated Significant Expected result1 G0:0006412 translation 416 55 6.49 8.0e-17 1 G0:0006414 translational elongation 45 13 0.70 1.2e-13 2 ribosomal small subunit assembly 10 GO:000028 6 0.16 2.8e-09 3 ADP biosynthetic process G0:0006172 8 5 0.12 4.8e-08 5 G0:0015986 17 6 ATP synthesis coupled proton transport 0.27 1.5e-07 > 500 G0:0006096 59 8 0.92 3.6e-06 6 glycolysis 92 G0:0006413 translational initiation 12 1.44 9.5e-06 21 GO:0001916 positive regulation of T cell mediated c... 5 0.33 1.5e-05 8 G0:0071353 cellular response to interleukin-4 22 5 0.34 1.9e-05 9 64Z 10 GO:0008284 positive regulation of cell proliferatio... Z8 10.02 Z.6e-05 11 GO:0000462 maturation of SSU-rRNA from tricistronic... 5 3 0.08 3.7e-05 12 GO:0015991 ATP hydrolysis coupled proton transport 25 5 0.39 3.7e-05 13 GO:0006662 glycerol ether metabolic process 13 4 0.20 3.7e-05 14 GO:0002474 antigen processing and presentation of p... 19 6 0.30 5.0e-05 15 G0:0042273 ribosomal large subunit biogenesis 14 4 0.22 5.2e-05

Discrimination between differentiated and undifferentiated cells

 After correction for cell heterogeneity, cells appear to separate better into two groups than without correction.

Can we better tease apart the effect of cell cycle and differentiation ?

- scLVM also enables learning multiple latent factors
 - Genes annotated for cell cycle
 - Th2 differentiation marker genes

Extended variance component analysis

Can we better tease apart the effect of cell cycle and differentiation ?

Th2 differentiation

928 genes with affected by the Th2 differentiation factor

- Th2/cell-cycle interaction
 200 genes with interaction effects
- Enriched for positive cell proliferation negative regulation of apoptosis

The origin of transcriptome diversity?

Thierry

Voet

Single-cell bisulfite sequencing (20 ESC cells)

Parallel bs-seq & RNA-seq profiling in 21 serum ES cells

Parallel bs-seq & RNA-seq profiling in 21 serum ES cells

GRcm38 Chr12: 86361117 - 86521628 (161 kbp)

Parallel bs-seq & RNA-seq profiling in 21 serum ES cells

Conclusions

- Latent variable models can effectively account for gene expression heterogeneity & confounding
- (e)QTL analysis
 - population structure & env. /technical confounding to improve power
- Single-cell RNA-seq analysis
 - a small number of genes with known cell cycle annotation is sufficient to estimate a cell covariance due to cell cycle
 - more compact gene-gene correlations
 - detection of genes with interactions involving multiple biological processes
 - Parallel bs-seq/RNA-seq profiling in the same cells reveals associations between methylation and transcriptome variation

Acknowledgments

<u>group</u> Barbara Rakitsch Florian Buettner Christof Angermüller Paolo Casale Helena Kilpinen Amelie Baud Danilo Horta

Johannes Stephan Bogdan Mirauta Kate Howell Fatemeh Ghavidel <u>EBI/Sanger</u> John Marioni Sarah Teichmann Thierry Voet

Kedar Natarajan

Valentina Proserpio Antonio Scialdone Iain Macaulay

Babraham Inst. Wolf Reik Gavin Kelsey Heather Lee Stephen Clark <u>Helmholtz Munich</u> Fabian Theis

Microsoft Research Nicolo Fusi Christoph Lippert

University of Sheffield Neil Lawrence

> Postdoc opportunities: Single-cell genomics Statistical genetics

Mixed model software: <u>https://github.com/PMBio/limix</u>

scLVM: https://github.com/PMBio/scLVM

