RNA-Seq expression analysis in Galaxy From A to Z

Y. Hoogstrate^{1,2} S. Hiltemann^{1,2}

¹Department of Bioinformatics & Department of Urology ErasmusMC, Rotterdam ²CTMM Translational Research IT (TraIT)

Galaxy Community Conference 2015, Norwich

・ロト ・聞ト ・ヨト ・ヨト

э

Overview

Introduction RNA-Seq

Raw data to alignment Raw data Data acquisition FASTQ QA/QC Alignment Measure expression

Differential Gene Expression (DGE) analysis

Count data Expression and design matrix Replicates

Wrap up

Introduction	Raw data to alignment	Differential Gene Expression (DGE) analysis	Wrap up
● 00	0000000 000	00 0000	
	000		
RNA-Seg			

Central dogma

RNA-Seq analysis in Galaxy July 5 2015

Introduction	Raw data to alignment	Differential Gene Expression (DGE) analysis	Wrap up
000	00000000 000 000 0		

RNA-Seq

Central dogma

Introduction	Raw data to alignment	Differential Gene Expression (DGE) analysis	Wrap u
000	00000000 000 000 0		
RNA-Seq			

RNA-Seq experiment workflow

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Introduction 000	Raw data to alignment ●0000000 ○○○ ○○○	Differential Gene Expression (DGE) analysis oo ooooo o o	
Raw data			

RNA-Seq experiment workflow

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Introduction	Raw data to alignment	Differential Gene Expression (DGE) analysis	Wra
	0000000 000	00 0000	
	000		

Raw data

Library preparation

・ロト ・聞 ト ・ ヨト ・ ヨト …

э

Introduction 000	Raw data to alignment 00●00000 000 000	Differential Gene Expression (DGE) analysis 00 0000 0	

Raw data

Library preparation

э

Introduction 000	Raw data to alignment 000€0000 000 000 0	Differential Gene Expression (DGE) analysis 00 0000 0 0 0	Wrap up

Raw data

FASTQ file format

Paired end data

Two corresponding files (often "R1", "R2")

Con	trol_L7.D701_R1.fastq 🗱	Cont	rol_L7.D701_R2_fastq 🗱
1	@HISEQ:130607:C257AACXX:7:1101:1571:1959 1:N:0: ATTACTCG	1	<pre>@HISEQ:130607:C257AACXX:7:1101:1571:1959 3:N:0: ATTACTCG</pre>
2	GCCTTTTGTGACTGGCTTTTTTCACTCAGCATAATGTTTGCTATAGAATN	2	GCATTATGTCCAGTGGAAATTGAGGCTGTTAGCAATAAAAACAATTAAGG
3	+	3	+
4 5	@@8DDDDD:C:ADBE:C:CFHBF99??FG>4CCF???BDF?:BAFF B#<br @HISE0:130607:C257AACXX:7:1101:1588:1971 1:N:0: ATTACTCG CCAGGTCGTGGTGATGTGTGTGTGTGTGTGTGTGGTGGGGAGGAG	4 5	@@<=BBDBAFH4DEEB<< <cdc?c:?fhcf+<ce9c9<?fcdfhedcg@c @HISEQ:130607:C257AACXX:7:1101:1588:1971_3:N:0: ATTACTCG</cdc?c:?fhcf+<ce9c9<?fcdfhedcg@c
78	<pre>CCAGGCCATGGCTAATCATCATCHTGATGTTCTATTTCAAAGCAAACAN + CC@FFFFHHFBFGGEIGIIBHHFHHIIIJEHIIAGIJFIIJGIIJGIJ#</pre>	7	AAAATITTTGTTTACTTTAGCTTTGTTGTGTAAATTGTATAAGTATA + @@@DFFFFHDFHHJEHBGEIGIGIJIJHIIIIGIIJIGIFDGHGGGIIB
9	@HISEQ:130607:C257AACXX:7:1101:1957:1965 1:N:0: ATTACTCG	9	<pre>@HISEQ:130607:C257AACXX:7:1101:1957:1965 3:N:0: ATTACTCG</pre>
10	CATTACGTTATTGAATTCCACACACATCCTATGAGGTTATTATCCCCATN	10	CAAGCTTGGCTCCTTGCACTACCTGGAGGTGTAAGCTTTGGCAAGTCGCT
11	+	11	+
12	@@@DFFFDHHFHHEIIGIIIIIIIIGGIIGGGIIIIIIIIIGHIIII#	12	@@@?BDD>DHAFHDH@FHHGFGICAG@DH)?1CC>CCFHHGADBEGGGH6
13	@HISE0:130607:C257AACXX:7:1101:2118:1955 1:N:0: ATTACTCG	13	@HISE0:130607:c257AACXX:7:1101:2118:1955 3:N:0: ATTACTCG
14	GATCGGAAGAGCACACGTCTGAACTCCAGTCACATTACTCGATCTCGTAN	14	GGGAAGGGGAAGGGGGGGGGGGGGGGGGGGGGGGGGGG
15	+	15	
16	CCCFFFFFGHGHHJJJJJJJJJJJJJJJJJJJJJJJJJGGIIIIJ#	16	***************************************

Raw data

Sequence data raw format: FASTQ

- Sequence is given per char
 - ▶ Two corresponding files (often "R1", "R2")
 - Pairs linked by position in file (and name)

Con	trol_L7.D701_R1.fastq 🗱	Contr	rol_L7.D701_R2.fastq 🗱
1	@HISEQ:130607:C257AACXX:7:1101:1571:1959 1:N:0: ATTACTCG	1	@HISEQ:130607:C257AACXX:7:1101:1571:1959 3:N:0: ATTACTCG
2	GCCTTTTGTGACTGGCTTTTTTCACTCAGCATAATGTTTGCTATAGAATN	2	GCATTATGTCCAGTGGAAATTGAGGCTGTTAGCAATAAAAACAATTAAGG
3	÷	3	+
4	@@8DDDDD:C:ADBE:C:CFHBF99??FG>4CCF???BDF?:BAFF B#</td <th>4</th> <td>@@<=BBDBAFH4DEEB<<<cdc?c:?fhcf+<ce9c9<?fcdfhedcg@c< td=""></cdc?c:?fhcf+<ce9c9<?fcdfhedcg@c<></td>	4	@@<=BBDBAFH4DEEB<< <cdc?c:?fhcf+<ce9c9<?fcdfhedcg@c< td=""></cdc?c:?fhcf+<ce9c9<?fcdfhedcg@c<>
5	@HISEQ:130607:C257AACXX:7:1101:1588:1971 1:N:0: ATTACTCG	5	@HISEQ:130607:C257AACXX:7:1101:1588:1971 3:N:0: ATTACTCG
6	CCAGGTCCATGGCTAATCATCATTTTGATGTTCTATTTCAAAGACAACAN	6	AAAATTTTTGTTTTACTTTTAGCTTTGTTTGTGTAAATTGTATAAGTATA
7	+	7	+
8	CC@FFFFFHHFBFGGEIGIIBHHFHHIIIJEHIIAGIJFIIJGIIJGIJ#	8	@@@DFFFFHDFHHJEHBGEIGIGIJIJHIIIIGIIJIGIFDGHGGGIIB
9	@HISEQ:130607:C257AACXX:7:1101:1957:1965 1:N:0: ATTACTCG	9	@HISEQ:130607:C257AACXX:7:1101:1957:1965 3:N:0: ATTACTCG
10	CATTACGTTATTGAATTCCACACACATCCTATGAGGTTATTATCCCCATN	10	CAAGCTTGGCTCCTTGCACTACCTGGAGGTGTAAGCTTTGGCAAGTCGCT
11	+	11	+
12	@@@DFFFDHHFHHEIIGIIIIIIIIGGIIGGGIIIIIIIIIGIHIIII#	12	@@@?BDD>DHAFHDH@FHHGFGICAG@DH)?1CC>CCFHHGADBEGGGH6
13	@HISEQ:130607:C257AACXX:7:1101:2118:1955 1:N:0: ATTACTCG	13	@HISEQ:130607:C257AACXX:7:1101:2118:1955 3:N:0: ATTACTCG
14	GATCGGAAGAGCACACGTCTGAACTCCAGTCACATTACTCGATCTCGTAN	14	GGGAAGGGGAAGGGGGGGGGGGGGGGGGGGGGGGGGGGG
15	+	15	+
16	CCCFFFFFGHGHHJJJJJJJJJJJJJJJJJJJJJJJJJJJ	16	***************************************

イロト 不得 トイヨト イヨト 二日

Raw data

Sequence data raw format: FASTQ

- Sequence is given per char
 - N means sequencer doesn't know
- Quality is encoded as a char
 - reflects probability of being called correctly
- Different encodings
 - http://en.wikipedia.org/wiki/FASTQ_format#Encoding
- RNA-Seq: data usually unstranded, but stranded does exist

Introduction 000	Raw data to alignment 000000●0 000 000	Differential Gene Expression (DGE) analysis 00 0000 0 0	
Raw data			

RNA-Seq experiment workflow

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Introduction 000	Raw data to alignment 0000000● 000 000 000	Differential Gene Expression (DGE) analysis 00 0000 0 0	
Row data			

Quality assurance & quality control

- Adapter contamination
- Trim low quality bases from the ends
 - Be aware: in paired end data reads are linked by position in file
 - Proceed with trimmed reads

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Introduction	Raw data to alignment	Differential Gene Expression (DGE) analysis	Wr
Alignment			

RNA-Seq experiment workflow

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

	Raw data to alignment	Differential Gene Expression (DGE) analysis	Wra
	0000000	00	
	000 0		
Alignment			

Single Nucleotide Polymorphisms in RNA-Seq Covered examples during hands-on

Biological interpretation: map reads to reference genome

イロト 不得 トイヨト イヨト 二日

- mRNA: spliced
 - Aligning: low/no penalty for gaps near introns
- mRNA: expressed
 - Only reads in expressed regions
- Requires specialized (slower) aligners

Introduction	Raw data to alignment	Differential Gene Expression (DGE) analysis	W
Alignment			

Typical RNA-Seq alignment

イロン イヨン イヨン イヨン

3

	Raw data to alignment	Differential Gene Expression (DGE) analysis	
	0000000 000 •00		
Measure expression			

RNA-Seq experiment workflow

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Introduction 000	Raw data to alignment ○○○○○○○ ○○○ ○●○	Differential Gene Expression (DGE) analysis 00 00000 0
Measure expression		

What information does RNA-Seq contain?

- Expression levels
 - Gene level
 - Transcript level Measure expression levels in RNA-Seq data(splice variants)
- Variants
 - SNPs, SNVs
 - Structural variants: fusion gene, conjoined genes, deletions

イロト 不得 トイヨト イヨト

3

- Non-reference transcripts
 - Novel genes
 - Viral/bacterial RNA
 - Insertions
- Theoretically
 - Allele specific expression
 - RNA-editting
 - Intron retention time, RNA-stability

	Raw data to alignment	Differential Gene Expression (DGE) analysis	
	0000000	00 0000	
	000 0		
Measure expression			

Measure expression levels in RNA-Seq

- Basic principle: count aligned reads in alignment
- Statistical independence (ensure a read belongs to only that gene)
 - Skip reads aligned to multiple places ('multi-mappers')
 - Skip overlapping gene annotations
 - Only look in exons

	Raw data to alignment	Differential Gene Expression (DGE) analysis	Wrap up
Practical			

Practical part 1

From raw data to expression levels

- Artificial small dataset
- Start galaxy!

Count data

RNA-Seq experiment workflow

3

Count data

Differential gene expression

- RNA-Seq: count-data
- Not normal-distributed, negative binomial
 - Read counts of 1.45 and -42 don't exist!
 - Special tests for count data

Read Count for Gene C

RNA-Seq analysis in Galaxy July 5 2015

	Raw data to alignment	Differential Gene Expression (DGE) analysis
000	0000000	00
	000	0000
	000	

Expression and design matrix

Expression matrix

- Rows: one candidate gene per row
- Columns: read counts, per gene, per sample

	Sample-1	Sample-2	Sample-3	Sample-4	Sample-5	Sample-6	Sample-7	Sample-8
Gene-1	112	4	10	21	8	16	584	59
Gene-2	173	10	39	38	12	24	949	157
Gene-3	152	123	177	155	113	355	536	673
Gene-4	46	36	132	49	52	124	206	366
Gene-5	51	19	40	27	20	51	101	282
Gene-6	23	28	34	13	7	12	47	128
Gene-7	48	105	125	56	49	68	254	408
Gene-22,000	38	1155	68	60	10	43	155	381

Introd	

Differential Gene Expression (DGE) analysis

Wrap up

Expression and design matrix

RNA-Seq experiment workflow

RNA-Seq analysis in Galaxy July 5 2015

	Raw data to alignment	Differential Gene Expression (DGE) analysis	Wrap up
	0000000		
	000		
Expression and desi	gn matrix		

Design matrix

- Rows: one sample per row
- Columns: mutually exclusive conditions

	Condition
Sample-1	tumor
Sample-2	tumor
Sample-3	tumor
Sample-4	tumor
Sample-5	normal
Sample-6	normal
Sample-7	normal
Sample-8	normal

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

	Raw data to alignment	Differential Gene Expression (DGE) analysis	Wrap up
	0000000	00	
Everacion and dad	an matrix		

Biological question

Biological question (difference between conditions)

										Condition
		1							Sample-1	tumor
		1							Sample-2	tumor
		1							Sample-3	tumor
									Sample-4	tumor
	1				/				Sample-5	normal
	1				1				Sample-6	normal
					1				Sample-7	normal
	1				1				Sample-8	normal
	Sample-1	Sample-2	Sample-3	Sample-4	Sample-5	Sample-6	Sample-7	Sample-8	Desigr	n matrix
Gene-1	112	4	10	21	8	16	584	59		
Gene-2	173	10	39	38	12	24	949	157		
Gene-3	152	123	177	155	113	355	536	673		
Gene-4	46	36	132	49	52	124	206	366		
Gene-5	51	19	40	27	20	51	101	282		
Gene-6	23	28	34	13	7	12	47	128		
Gene-7	48	105	125	56	49	68	254	408	_	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Replicates

Biological replicates

- 2 class problem (tumor normal)
 - Scenario 1
 - Sequence 100M reads
 - 3 replicates
 - 100M * 3 = 300M reads
 - Scenario 2
 - Sequence 10M reads
 - 30 replicates
 - 10M * 30 = 300M reads
- Question: "more sequence or more replication?"

Practical

Practical part 2: more sequence or more replication?

- http://www.ncbi.nlm.nih.gov/pubmed/24319002
 - MCF7 cell line
 - 2 conditions: treated and untreated with hormone
 - n^o DE genes reflects statistical power
- Practical: complete table:

Replicates	Seq. depth (million)	DE genes
0	0	0
7	5	?
7	10	?
7	30	?
5	30	?

Differential Gene Expression (DGE) analysis oo oooo o Wrap up

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Wrap up

Raw data to alignment	Differential Gene Expression (DGE) analysis	Wrap up
0000000	00	
000 0		

Wrap up

- http://bioinformatics.oxfordjournals.org/content/ 30/3/301.long
 - " In the human cell line MCF7, adding more sequencing depth after 10M reads gives diminishing returns on power to detect DE genes"
 - Using 5 or 7 replicates still makes a difference

< ロ > < 同 > < 回 > < 回 > < 回 > <

소리가 소문가 소문가 소문가 ...

Useful links

- https://usegalaxy.org/u/jeremy/p/galaxy-rna-seq-analysis-exercise
- https://testtoolshed.g2.bx.psu.edu/view/yhoogstrate/edger_with_design_matrix
- http://bioinformatics.oxfordjournals.org/content/30/3/301.long
- https://bioinf-galaxian.erasmusmc.nl/galaxy/
- https://github.com/ErasmusMC-Bioinformatics/galaxy-tools
- http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103207
- http://www.bioinformatics.babraham.ac.uk/training/RNA-Seq_analysis_course.pptx