
References

[1] Bo Li, Nathanael Fillmore, Yongsheng Bai, Mike Collins, James A. Thompson, Ron Stewart, Colin N. Dewey. Evaluation of de novo transcriptome assemblies from RNA-Seq data.[2] Marçais, G. and Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics, 27(6):764-770. [3] Goecks, J, Nekrutenko, A, Taylor, J and The Galaxy Team. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010 Aug 25;11(8):R86.[4] Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J. “Galaxy: a web-based genome analysis tool for experimentalists”. Current Protocols in Molecular Biology. 2010 Jan; Chapter 19:Unit 19.10.1-21.[5] Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A. “Galaxy: a platform for interactive large-scale genome analysis.” Genome Research. 2005 Oct; 15(10):1451-5. [6] Guillaume Marcais and Carl Kingsford, A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics (2011) 27(6): 764-770 (first published online January 7, 2011) doi:10.1093/bioinformatics/btr011

Trinity Galaxy Portal

Carrie Ganote ❄ Ben Fulton ❄ Brian Haas ❄ Timothy Tickle ❄ Le-Shin Wu ❄ Thomas Doak

Hardware Setup

About the National Center for Genome

Analysis Support

Trinity Software

 NCGAS began as an informal group within Research Technologies at IU which focused on support for IU’s biology
department. The need for larger scale computation has grown with the advances in lab technology, especially with the

explosion of throughput provided by NGS. NCGAS was formalized as a genomics support group with the receipt of an Advances in Biological Informatics (ABI) award from the National Science Foundation (NSF). Funding began in late 2011 with award number 1062432. NCGAS offers services to any NSF-funded genomics project as well as supporting its IU user base. Services include:• Galaxy support, of course! • Advice on experimental setup• Genome browser setup and maintenance • Linux and software help• Data stewardship through the Scholarly Data Archive and IUScholarWorks • Installation of bioinformatics software on NCGAS
machines• Entire analysis - usually for coauthorship • Analysing and interpreting results

The Trinity software can be broken down into three major phases or componenents:
 • Inchworm • Chrysalis • Butterfly
Each of these steps performs a specific function which differs in
resource requirements and in ability

to run in parallel. The last step, for

example, can take best advantage of CPU power by exhaustively multithreading. We have used the
Detonate [1] software to benchmark

different versions of Trinity - you may

also see the performance pages at http://trinityrnaseq.github.io [2]. When gathering statistics on
the memory consumption of

Trinity, it is important to note

that the statistics reported by the

deploying machine might report

the maximum memory usage - as

shown on the right, this is not

always a sustained level of memory use. It is important to know the behavior of a tool when optimizing
Galaxy to run it.

PreprocessingFastQ files typically contain millions of reads. Many of these reads do not add extra
information - they are essentially redundant - but it takes extra time and resources downstream to deal with them. For this reason, digital normalization is recommended in order to make the job of assembly easier. Normalization removes reads that are likely to be
sequencing error or are highly redundant.

InchwormThis step starts the assembly process by first breaking the reads into smaller components called k-mers. In Trinity, a k-mer is a 25 base pair substring of the original read. The Jellyfish software package [6] is used to dissolve the reads into all possible 25 bp substring and count the occurance of each. Once the substrings are accounted for, Inchworm builds
transcripts by joining k-mers back together. Alternatively spliced transcripts are not fully

resolved at this step.

ChrysalisAt this step, alternative splicing is further explored - Inchworm transcripts that share
regions are clustered and a De Bruijn graph is built for each cluster. The distribution of

k-mers can inform decisions about clustering.

ButterflyOften the most intense step, Butterfly resolves the De Bruijn graphs in parallel to decipher
what reads belong to what isoforms or genes. This step builds a graph in memory for each

thread and the underlying java software can allocate large amounts of memory.

Benchmarks

The work to deploy Trinity Galaxy, to develop new tools for cancer research, and to optimize Trinity further for HPC applications was funded by a grant from the National Institutes of Health (NIH), specifically the National Cancer Institute (NCI), award number U24CA180922. Included in
this award was funding for hardware to set up the

Galaxy front end for Trinity.

Three nodes were purchased to be added to Indiana University’s Karst cluster - a general purpose Linux
supercomputer for research and academic use. The

Trinity software has high memory requirements

and is not suitable for running with large input sizes on desktop-caliber machines. Due to this
limitation, Trinity is not available on many public

Galaxy instances. The half-terabyte nodes for the

Trinity Galaxy should be sufficient for most Trinity

runs.

The Trinity RNA-Seq software package is the leading tool for de novo assembly of transcriptomes [1]. Genes

are transcribed into RNAs in the nucleus, processed, and exported to the cytoplasm as mature messenger RNA (mRNA). Here they program all the cell’s protein production. mRNA can be specifically captured, converted
into RNA-Seq libraries, and sequenced quickly and relatively cheaply with Next Generation Sequencing (NGS). This poster gives you an outline of the way we set up a Galaxy [3,4,5] instance specifically geared for this software
package and also to provide some benchmarking of the kind of uptake and use we see on our resources.

Figure [1]: Mus musculus data set core utilization in number of cores (32 total)Command: Trinity --seqType fq --JM 20G --SS_lib_type RF --output ./trinity_out --CPU 32 --monitoring --left reads.left.fq --right reads.right.fq

Figure [2]: Mus musculus data set memory usageCommand: Trinity --seqType fq --JM 20G --SS_lib_type RF --output ./trinity_out --CPU 32 --monitoring --left reads.left.fq --right reads.right.fq

The Trinity Galaxy Portal main screen: https://galaxy.ncgas-trinity.indiana.edu

The best way to inform decisions about setting up

a Galaxy tool to consume certain resources is to see

how the tool behaves on the system in question. In this case, 417 jobs were used as a small test of
how the system behaves. Galaxy launched these Trinity jobs with 8 cores and 250GB of RAM:
The correlation is not as strongly linear as

expected, based on previous results.

Note that the

memory consumed

in these runs

is reported as

a maximum of 250GB.
The lines on this

graph represent

where the Trinity

tool did not use the full allotment of memory.

This may be due to higher volumes of testing the

system, but there is also a change in implementation

that may have contributed. At the end of March all jobs were required to use the --normalize_reads
flag, which changes the performance of Trinity. The

previous analysis was done using only successful

jobs - the effect appears stronger if failed jobs are

included.

The final goal of this work is to optimize the way
that jobs are launched through Galaxy to get

the best throughput for Trinity assemblies. The number of users and jobs submitted is climbing:With three nodes
and a growing

number of jobs,

the only way

forward is to make

sure the cluster stays as utilized
as possible. Next

steps will involve

varying the amount of memory given to a job,

carefully tuning the number of cores, and more

accurately guessing walltime based on the input sizes of the data.This data was collected using Galaxy’s logs, Torque’s logs, and preliminary collectl data - more
sophisticated methods benchmarking is a future

plan.

CPU hours = 5.637 (input size) + 0.269

The memory used and wall hours change noticeably

after the end of March.

