DEEP PROTEOME COVERAGE THROUGH RIBOSOME PROFILING AND MS INTEGRATION. <u>Elvis Ndah^{a,b,c}; Jeroen Crappé^a; Alexander Koch^a; Gerben Menschaert^a; Sandra Steyaert^a; Petra Van Damme^{b,c}</u>

INTRODUCTION

Recent studies point to an underestimation of the complexity of the (eukaryotic) proteome [1]. With evidence pointing to the existence non-annotated translation products from alternative translation initiation resulting in the creation of N-terminal extended or truncated proteoforms, internal out-of-frame translation sequence variations products others [1,2]. Typically, such amongst alternative translation products cannot be identified from canonical protein databases, hence the need for a tailored search space.

MATERIALS & METHODS (PROTEOFORMER Pipeline[1])

		RNA	Amino
1 next generation sequencing	3 transcriptome mapping	SNP calling	6 translation
SE, shor HiSeq (Illumina) ± 30bp	TOPHAT 2	samtools/mpileup GATK	custom Perl/Pytho
Be 100 - Harringtonine Be 100 - No Drug 100 - No Drug 100 - No Drug 100 - No Drug 100 - No Drug	splice & fusion junctions BED	SNP features VCF	SNP awa INDEL awa TIS awa
		5 TIS calling	
2 quality control	alignment SAM/BAM	custom Perl/Python	complete
		classification: SVM rule-based	transcriptome
	indels BED	new transcripts	annotate (based on
 sequence quality metagenic functional annotation 	ACTGGACCATAGCAGGGTACACAGGTACAA ACTGGACCATAGC GTACACTGGTACAA		
FASTQC/custom			MS-based prote
annotation	evne	riment results	SearchGUI x!
species specific	expe	MS/MS spec	ctra
STAR indexes annotation (UCSC/Ensembl) sequences		SQLite	identificat

WORKFLOW OVERVIEW

1. Ribosome profiling (**RIBO-seq**) performed on HiSeq, Illumina sequencing platform

2. Quality control based on existing tools as FastQC and custom metagenic functional assessment.

3. **Transcriptome mapping** based on STAR ^[4] and/or TopHat2^[5] local aligners.

4. Single nucleotide polymorphism **(SNP) calling** based on samTools-mpileup.

Support Vector Machine (SVM) ^[2] or rule-based algorithm

6. Translation product assembly, taken into account the SNP, TIS, INDEL awareness. Construct complete proteome, optionally combine with Canonical.

^a Laboratory of Bioinformatics and Computational Genomics, Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, . MS-based proteomics/peptidomics using SearchGui ^[6] ^b Department of Medical Protein Research, Flemish Institute for Biotechnology, B-9000 Ghent and PeptideShaker^[7] tools. ^c Department of Biochemistry, Ghent University, B-9000 Ghent.

Genome-centric visualization of all generated information tracks (Ensembl, UCSC, IGV genome browsers)

RIGHT: uORF with TIS called by RIBO-seq and a peptide [AGHKVAHATLKGPSVVKE] at the TIS identified by N-terminomics for gene AT3G62400 of Arabidopsis Thaliana TAIR10 genome.

CONTACT : elvis.ndah@ugent.be, Gerben.Menschaert@Ugent.be

AFFILIATIONS

verage to determine transcripts being translated. Translation cutoff nined by 95 th percentile of coverage values on untranslated regions						
			Gene 3'UTI Mear Perce	Coverage R Coverage 1 + 2*sd Cutoff [0.1] entile cutoff [0.08]		
)	0.2	0.4	0.6	0.8	1.0	
Coverage						

CONCLUSION & FUTURE WORK

Deep proteome coverage based on **ribosome profiling** aids mass spectrometry-based protein and peptide discovery and provides evidence of alternative translation products and near-cognate translation initiation events ^[1].

Future work will mainly focus on : Investigating read density and coverage to identify genes undergoing translation. Implementing SVM in TIS calling algorithm

REFERENCES

[1] Crappé, J., Ndah, E., Koch, A., Steyaert, S., Gawron, D., De Keulenaer, S., De Meester, E., De Meyer, T., Van Criekinge, W, Van Damme, P. and Menschaert, G. (2014) PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration. Nucl. Acids Res. (11 March

[2] Lee, S., et al. (2012) Global mapping of translation initiation sites in mammalian cells at single nucleotide resolution. Proc. Natl. Acad. Sci. U.S.A. 109, E2424–E2432.

[3] Ingolia, N et al. (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell

[4] Michel, A. et al. (2013) Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale. Wiley Interd. Rev. RNA. Epub

[5] Dobin A, et al. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29 (1): 15-21.

[6] Menschaert, G, et al. (2013) Deep proteome coverage based on ribosome profiling aids MS-based protein and peptide discovery and provides evidence of alternative translation products and near-cognate translation initiation events. Mol Cell Prot.

