
Reproducible Galaxy: Improved development

and administration
Aarif Mohamed Nazeer Batcha1 , Sebastian Schaaf1,2, Guokun Zhang1, Sandra Fischer1, Ashok Varadharajan1

and Ulrich Mansmann1,2

1 Department of Medical Informatics, Biometry and Epidemiology (IBE), Ludwig Maximilians University (LMU) Munich, Germany
2 German Cancer Consortium (DKTK) partner site Munich, German Center for Cancer Research (DKFZ) Heidelberg, Germany

Script Information
Language Ansible (YML-formatted playbooks)

Tested OS Ubuntu 14.04, SLES 11 SP3 (Suse Linux Enterprise Server)

Execution time ~15 minutes (incl. all compilations)

Pre-requisites Hosts must be accessible via SSH

Hosts must have identical root password

Internet connection for downloads

Script deployment machine must have Ansible installed

Other info Scripts can be executed on blank Ubuntu machines. For

SLES, basic zypper repositories for developer packages

must be integrated before execution.

Script Description

Ansible3 is an open-source, easy-to-script and very

powerful automation tool, intended to simplify

deployment, configuration and management of

computer nodes over SSH, with the latter being the

only dependancy on the target host. A key element

here are the dedicated scripts, called ͚playbooks .͛

The respective human-readable markup languange

provides high-level commands and a range of pre-

configured control packages (e.g. for permissions,

config file manipulation and service handling).

Consequently, Ansible is in use for a longer time in

Galaxy Main. Ansible playbooks have been deployed

by Galaxy Main for administration and maintanence

and are available online5 as an inspiration.

In constrast, our Ansible playbooks6 are more

dedicated to establish a clean and orderly working

environment in a reproducible manner by setting up

a selection of core modules/services (Fig. 1) bottom

up from scratch in order to achieve a working server

as close as possible to the production environment.

New Ansible snippets can be patched to other

instances easily.

1. Configure inifile

2. Configure Ansible

hosts inventory file

3. Execute

1http://orgmode.org/worg/org-

contrib/babel/intro.html#orgheadline31

2Schaaf et al. 2014 - The Munich NGS-

FabLab – A glimpse on an IT

infrastructure for medical sequence

data (Poster P10 at GGC2014)
3Nazeer Batcha et al. 2014, Practical

experiences from the Munich NGS-

FabLab (Poster P3 at GCC2014)

4http://www.ansible.com/home
5https://github.com/galaxyproject/usegala

xy-playbook
6https://bitbucket.org/ibe/galaxy-setup-

scripts.git
7https://www.docker.com/
8https://wiki.galaxyproject.org/CloudMan

NGS-FabLab Framework

 -- home
 `-- galaxy-user
 |-- downloads
 |-- external_resources
 | |-- hostname
 | | |-- dataset_files
 | | |-- job_working_directory
 | | `-- new_file_path
 | |-- genomes
 | `-- ftp_upload_dir
 |-- external_tools
 |-- galaxy
 |-- homescheme_installation
 |-- shed_tools
 `-- tool_libraries A

n
si

b
le

 P
la

y
b

o
o

ks

Preliminary Inquiry
• Select installation procedure

• Enter root password for the hosts

• Create root bashrc variables

• Create users and groups

• Install postgres and dependencies

• Configure postgresql for access

• databases and users for the hosts

• Install apache2

• Add modules and configure SSL

• Create galaxy .bashrc variables

• Install Galaxy from GitHub

• Configure galaxy.ini file

Host ENV

NFS server setup NFS client connections

• NFS kernel installation

• Create mount points for galaxy/grid

• Create directory tree on client side

• Mount necessary folders to remote

servers

Grid engine setup (service and connections)

• Install tool dependencies

• Configure grid engine

• Install master, execution and

submission hosts

For Galaxy submission host:

• Create job configuration file

• Edit galaxy.ini file for grid

configuration

Fig. 3 – Default directory tree (client side);

directories underlayed in yellow are configu-

rable as optional NFS mounts.

Fig. 1 – Overview about core modules/services deployed by our playbook. All of them are independent and combinable. In principle,

functionalities can be performed by alternate software packages and exchanged as a module (e.g. SGE against another job distributor). As most

of the interfaces are realized via network protocols, they are in principle unbound from their (physical or virtual) location, enhancing scalability.

NGS-FabLab Framework

File/Database Servers

Big Host
(Storage)

Production Test Development

Fast Host
(shared virtual TMP, PostgreSQL)

Fig. 2 – Principle three step process for setup

Our actual infrastructure1 runs on a single

server with mass storage array attached.

A virtualization layer creates separate

dedicated servers, sharing common

resources wherever possible via TCP/IP.

Reproducible research, by definition, is the

distribution of research publication along with

data, software source code, and tools required to

reproduce the results discussed in the

publication. - orgmode.org1

Galaxy is an optimal platform for such

reproducibility efforts.

The Munich NGS-FabLab2 is the first cross-

institutional IT infrastructure for medical

research at the LMU, developed due to local

contraints like the impossibillity to go for cloud

services. Although under constant develop-ment,

it has already become essential as a common

and reproducible work environment for users,

admins and developers.

Such goal has been achieved in the past by

establishing a Galaxy framework via an auto-

mated shell setup script3, which got constantly

less manageable. As an improvement, its func-

tionalities were reviewed and re-coded into

Ansible scripts.

An ideal Galaxy production environment offers

such reproducibility for users. However, such

luxury is often neglected for developers and

administrators. A developer always aims for

progress, while admins require consistancy. In

most situations, they face limiting constraints like

time or computing resources and have to try to

figure out common grounds at the cost of

reproducibility.

In a nutshell, this poster presents and publishes

our framework to be a source of inspiration and

our contribution to enhance reproducible

development. Additionally, it might be indeed

deployed as a convenient and scalable working

horse for third parties, who neither want to go

for less powerful solutions based on e.g. Docker7

nor for cloud services like Cloudman8, but local

hardware and/or VMs.

http://orgmode.org/worg/org-contrib/babel/intro.html#orgheadline31
http://orgmode.org/worg/org-contrib/babel/intro.html#orgheadline31
http://orgmode.org/worg/org-contrib/babel/intro.html#orgheadline31
http://orgmode.org/worg/org-contrib/babel/intro.html#orgheadline31
http://www.ansible.com/home
https://github.com/galaxyproject/usegalaxy-playbook
https://github.com/galaxyproject/usegalaxy-playbook
https://github.com/galaxyproject/usegalaxy-playbook
https://github.com/galaxyproject/usegalaxy-playbook
https://bitbucket.org/ibe/galaxy-setup-scripts.git
https://bitbucket.org/ibe/galaxy-setup-scripts.git
https://bitbucket.org/ibe/galaxy-setup-scripts.git
https://bitbucket.org/ibe/galaxy-setup-scripts.git
https://bitbucket.org/ibe/galaxy-setup-scripts.git
https://www.docker.com/
https://wiki.galaxyproject.org/CloudMan

