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introduction

The most common method of identifying proteins in a complex sample is to perform liquid GIO has been tested on various PIT datasets, including one acquired from HelLa cells infected
chromatography tandem mass spectrometry (LC-MS/MS) then search the acquired spectra against a with adenovirus [1]. The results, summarised in Figure 3, show that a PIT analysis in which no
reference proteome downloaded from a database such as UniProt. This approach has the major reference genome is used identifies over 90% of the proteins that can be found using a traditional
drawback of not being able to identify gene products that are not already known. We recently search against the UniProt reference proteomes from human and adenovirus. Additionally, PIT
developed the proteomics informed by transcriptomics (PIT) methodology, which tackles this problem finds a number of proteins that were missed in the UniProt search. These results concur with
by using RNA-seq to generate sample-specific protein databases that the LS-MS/MS data can be those obtained in the original non-Galaxy analysis.

searched against [1]. This allows the detection and quantitation of previously unknown proteins,
protein variants and other exotic translated genomic elements. This is of particular utility when
studying non-model organisms and samples with very dynamic proteomes, e.g. stem cells, cancer
cells and virus-infected cells. The analysis of PIT data is complex and computationally intensive, 1883
requiring the integration of multiple third party tools from the proteomics, transcriptomics and
genomics communities. To make this analysis tractable and repeatable we have produced GIO
(Galaxy Integrated Omics) — a Galaxy-based framework containing the key tools and workflows
needed to analyse data from PIT experiments in a reliable and repeatable way.
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Proteomics informed by transcriptomics (PIT)

In a PIT analysis the sample of interest is analysed by both RNA-seq and LC-MS/MS, as shown in
Figure 1. The RNA-seq short reads are de novo assembled into transcripts using a tool such as
Trinity [2]. These transcripts are then used to produce a list of open reading frames (ORFs) against
which we can attempt to match peptide spectra from the mass spectrometer. A strong match

indicates that a transcript is being translated to a polypeptide (typically a protein). By implementing HTML renderers for the PSI data standards, we are able to view the results of
proteomics analysis directly within Galaxy, allowing instant access to results without the need to
download files and view them in a locally installed application. An example of such output is
=== ORF finding shown in Figure 4.
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Data from early PIT experiments was analysed using a combination of closed source proteomics £ G3GWMO G3GTAD, CRIGR Eokaryotic peptide chai
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proved to be challenging to configure and use, impossible to scale, and difficult to repeat. To i
overcome these problems, we established an in-house Galaxy server, to which we added a range of Figure 4: The top portion of a HIML rendering of a list of identified peptides stored in a PSI
tools for performing steps in the PIT data analysis protocol. These included pre-existing proteomics identification format (mzldentML) file.
tools (some of which had already been wrapped by the Galaxy-P project [3]), pre-existing sequence
analysis tools, and in-house tools written specifically for PIT. To avoid confusion with more typical For species for which a genome assembly exists, a popular way to visualise the results of PIT
Galaxy servers we named our server GIO, for Galaxy Integrated Omics. analysis is to show them in their genomic context. We are working to provide this functionality in

GIO by embedding the Genoverse genome browser [5], as shown in Figure 5.

The tools are combined into workflows that support the analysis of data for various applications of
PIT. One such workflow, which identifies the proteins present in a sample and uses this information
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Figure 5: Example of Genoverse view of a region of the human genome annotated with

Figure 2: Example of a genome annotating PIT workflow implemented within GIO. The workflow is ranscripts and peptides identified using GIO's genome annotating PIT workflow. Here, peptides
comprised of pre-existing tools from the proteomics and genomics communities, integrated using in- and transcripts both serve to confirm gene structures that have already been annotated in the
house tools developed in various programming languages. reference genome.
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