
The Galaxy API
(or, how to do things)

What’s an API?

● Links (URLs) no longer simply load a page or
complete a form.

● Modern web apps use urls as functions.
● We re building galaxy on top of the API almost

exclusively going forward.

What’s it good for?

UI: good for exploring data and experimenting
API scripting: good for automation of repeated tasks
UI: good for those not comfortable with command line
API scripting: good for power users and integration with non-
Galaxy resources

Both: allows the sharing/collaborating/recording of analyses
using a common resource (Galaxy)

REST?

Create : HTTP POST + resource URL
Read : GET + resource URL
Update : PUT + resource URL
Delete : DELETE* + resource URL

stateless:
nothing is stored on the server between requests and
each request must contain all the info the server needs

Resources, URLs, and parameters

Galaxy has many resources:
datasets
tools
workflows, histories, libraries, etc.

Each resource maps to an api URL:
api/datasets
api/tools
api/workflows, api/histories, api/libraries, etc.

Resources, URLs, and parameters

We call an API function using: HTTP VERB + noun + extras:
GET /api/tools/sort1?io_details=True -> detailed tool info
POST /api/histories { name : new } -> create a history named new
PUT /api/histories/<some id> { published : true } -> publish a history
DELETE /api/histories/<id>/contents/<id> -> delete an history s dataset

URL params (e.g. ids) vs. query params (?...)
POST/PUT params as JSON

How to access the API

● When the UI accesses the API, session
authentication is used.

● When external callers (such as scripts) access,
an API key must be passed as well.

● API keys are only available via the UI.

JavaScript Object Notation (JSON)

A concise way of building data structures
A medium of interchange for the API

Fully described at: json.org
!Watch those quotation marks

Security

Keep keys in a secure location:
they re the same as a username and password

SSL recommended:
http://localhost?key=foo could be sniffed
https://localhost?key=foo safer

Errors

HTTP status codes:
200 ok, 400 your error, 500 server error

Galaxy error codes:
lib/galaxy/exceptions/error_codes.json

A work in progress
Error handling: for the public & your future self

Analysis Basics

If you re not familiar with these Galaxy resources:
histories, datasets, workflows, tools

let us know now! (we re happy to give an
overview)

Analysis Exercise #1

1. Create a history
2. upload a file to a dataset
3. import a workflow
4. run the workflow on the data

Analysis Exercise #1 - create a history

GET + histories = list histories
POST + histories = create a history
GET + histories + id = detailed history info

Analysis Exercise #1 - upload a file

POST + tools + upload1 = run the upload tool
GET + history + /contents/ + hda = did it work?

(Histories and libraries contain datasets)

Analysis Exercise #1 - import a workflow

GET + workflows = list my workflows
Nothing! Let s import one:

data/Bed_interval_lengths.ga
POST + workflows/upload + workflow = import

Analysis Exercise #1 - run a workflow

GET + workflows + id = detailed info
(find the input steps) { inputs : ... }
POST + workflows + data = run a workflow

Analysis Exercise #1 - extras

● viewing the resulting data in a number of
formats

● downloading the results to the filesystem
● publishing the history

Analysis Exercise extras - viewing data

GET + dataset + id + ...how to view = data json

Data providers: do not alter data, provide a view
line : return data as strings
column : return data as lists/arrays
dict : return data as dictionaries

Analysis Exercise extras - downloading

GET + dataset + id + display = download

Returns as text -> redirect to file

Analysis Exercise extras - publishing

Update history to published = true
PUT + histories + id + { published : true } =

make the history accessible and publish

Analysis Exercise #1

Questions?

(break time)

Proxy Configuration for External Auth
location / {
 auth_ldap_require valid_user;
 auth_ldap "LDAP Auth Source Description";
 proxy_set_header REMOTE_USER $remote_user;
 proxy_pass http://galaxy_app;
 proxy_set_header X-Forwarded-Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-URL-SCHEME https;
 ...
}

location /api {
 proxy_set_header REMOTE_USER $remote_user;
 proxy_pass http://galaxy_app;
 proxy_set_header X-Forwarded-Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
}

For API access, set REMOTE_USER if
available so Galaxy session based
requests are let through.
If REMOTE_USER is not available pass the
request through and let Galaxy determine
if a key is present and valid.

User impersonation with run_as

Optional list of email addresses of API users who can make calls on behalf of

other users

api_allow_run_as=foo@foo.com

Master key that allows many API admin actions to be used without actually

having a defined admin user in the database/config. Only set this if you need

to bootstrap Galaxy, you probably do not want to set this on public servers.

master_api_key=MASTERLOCK

enable_quotas = True

Administrative Usage, Extra Setup

Exercise - Tool Installation

The Task: Given a yaml file with several tools
listed, install them all to a local galaxy.

toolshed.g2.bx.psu.edu:
 devteam:
 - bam_to_sam
 - ctd_batch

Bonus Points: Query the instance tools list to see if the tool
exists first, and only attempt install if it doesn t.

Exercise - Scaffold a new User

The Task: Write a single script to create a new
user account, set an initial quota, and upload
some starter data.

python scaffold_user.py <username> <email> <password>

Exercise - Disk Usage and Job Report

The Task: Write a script that prints out how
much disk space users are using, and how many
currently running jobs they have.

Exercise - Galactic Dropbox

The Task: We want to build a program that
monitors a drop location on the filesystem.
Anything that shows up here will be linked
(upload, but no copy) into a data library.

Bonus Points: If a file is removed from disk, remove it from
the library.

BioBlend

BioBlend is a Python (2.6 or 2.7) library for
interacting with Galaxy and Cloudman APIs.

Provides a nice object layer on top of the pure
REST invocations.

Doing the Branch, Release and
Merge Waltz

We will focus on branching and release management with regard to existing
instances which implement customized code within Galaxy. This may create
huge challenges in the future, especially for instances in production which
require a lot of maintenance and which run older versions of Galaxy. All Clouds
and Clusters which require multiple extensions like:

•huge file management (upload, etc)
•authentication issues
•cluster/cloud connectivity
•And the customization of these issues is not easy and
straightforward.

Monday, June 30, 6:15pm
Salon A
http://bit.ly/gcc2014mergebof

Break @ 3:00 - 3:30
Drinks and snacks will be available during the

break, and in all Training Day Rooms after
this workshop.

