
Galaxy
Internals, organization, control flow

www.getgalaxy.org

!

James, Dan, Greg

@jxtx / #usegalaxy

http://www.galaxyproject.org

The Plan

1. What’s in the galaxy-central repository?

2. Galaxy web application architecture

3. Control flow in the Galaxy web application

4. Tools in the age of the toolshed

5. Galaxy Workflows

6. Galaxy data organization

0. The right ways to be involved with Galaxy

IRC: irc.freenode.net #galaxyproject

!

Trello: https://trello.com/b/75c1kASa/galaxy-

development

http://irc.freenode.net
https://trello.com/b/75c1kASa/galaxy-development

1. Getting around the Galaxy repository

(lets look at the code)

2. Galaxy application architecture

galaxy.util.	

pastescript.serve

Middleware Stack

galaxy.webapps.galaxy.	

GalaxyWebApplication

WSGI Web
Server

galaxy.app.	

UniverseApplication

Toolbox

Job Manager

Model

Datatypes Reg.

...

Job Handlers
Job Manager Job HandlersJob Handlers

<<thread>>

Job Runner

B
ro

w
se

r
S

e
rv

e
r

Universe App…

controllers controllers.api

HTML on the wire,

typically from mako
JSON on the wire

Renderer +

progressive JS

Backbone.js

MVC on browser

The old way The new way

The old way

!

User stuff (prefs, etc)

!

Tool forms

!

Reports

!

Tool shed

!

*Many of these have an API

but it is not yet used by the UI

The new way

!

Visualizations

!

History

!

Tool menu

!

Most grids

!

In between

!

Workflows

!

Data Libraries

!

Example of the new way: Tool menu generation

Example of the new way: Tool form generation

So many languages!

Python

All of the core of Galaxy

B
ro

w
se

r
S

e
rv

e
r

Other languages (e.g. C)

Only through Python eggs

Cheetah

Only tool config files

Mako

Most web controllers

JSON

API, database, etc

Javascript
Mostly on the browser side,

all new UI componetns
Handlebars

Browser side templating

3: Control flow: running jobs

Browser
tool_runner

controller
tool_conf

Browser
tool_runner

controller
tool_conf

Job

Browser
tool_runner

controller
tool_conf

Job

Job Handler Job Runner

Processes

galaxy.util.	

pastescript.serve

Application Stack

galaxy.webapps.galaxy.	

GalaxyWebApplication

galaxy.util.	

pastescript.serve

Application Stack

Job Handlers

Job Manager

Job HandlersJob Handlers

4. Tools in the age of the toolshed

The old way

!

1. Each tool specified by a tool.xml somewhere on

the local filesystem (but typically under tools)

!

2. Tools to be loaded specified in tool_conf.xml,

loaded by Galaxy at startup — no representation in

database beyond tool ids

!

No way to access old tool configurations after

updates

ToolShed	

Repository

In the ToolShed

stored as mercurial repo on disk in ToolShed	

several types: unrestricted, suite, tool dependency	

unrestricted can have multiple installable revisions

lib.galaxy.webapps.tool_shed / lib.tool_shed

ToolShed	

Repository

Repository	

Dependency

ToolDependency Tool

In the ToolShed

stored as mercurial repo on disk in ToolShed	

several types: unrestricted, suite, tool dependency	

unrestricted can have multiple installable revisions

ToolShed	

Repository

repository_dependencies.xml tool_dependencies.xml tool.xml

Each installable revision can have

Workflows	

Datatypes	

Data Managers	

etc

+

ToolShed	

Repository

Installation	

Recipe

ToolShed	

Repository

an installed package/binary
Installation	

Recipe

ToolVersion

Installed in Galaxy

ToolShed	

Repository

Repository	

Dependency

ToolDependency

source: toolshed, owner, repo name, changeset revision 	

metadata: json representation of repo contents	

one per installed installable revision

app.install_model

dependency name	

dependency version	

dependency type: package, environment setting

ToolVersion	

Association

tool_id	

parent ToolVersion	

allows tool lineage

backref	

 via 	

 RepositoryRepositoryDependencyAssociation

tool_id

5. Galaxy workflows

Workflow Module

Input Module

Input Data Module

Tool Module

lib/galaxy/workflow/modules.py

Workflow modules have:

!

Config time state — in the workflow editor used to

generate the form associated with a given step and

update it

!

Runtime state — similar but used for parameters set

at workflow runtime

!

As well as conversion from JSON <-> Workflow

Module instance <-> workflow_step encoded in

database

Workflow scheduling:

!

Currently workflows are scheduled like any other job

!

All intermediate datasets and connections are

created and each step is sent as a job to the

JobManager

!

Pausing: when intermediate steps fail the workflow

is paused. Although, this actually applies to any

dependent jobs

6. Galaxy data organization

Where does data in Galaxy go?

!

1. “Metadata” is stored in a SQL database (preferable

Postgres): Users, workflows, histories, dataset

metadata… everything a user creates interacting

with Galaxy except the raw contents of datasets

!

2. Dataset contents is stored in file_path, typically

database/files

!

3. Data used by tools that is not user specific is

stored in

https://wiki.galaxyproject.org/Admin/Internals/DataModel

Galaxy data model is not database entity driven

!

Entities are defined in galaxy.model as objects

!

SQLAlchemy is used for object relation mapping

!

Mappings are defined in galaxy.model.mapping in

two parts — a table definition and a mapping

between objects and tables including relationships

!

Migrations allow the schema to be migrated forward

automatically

!

It rarely makes sense to access the Galaxy database

directly

Where does data in Galaxy go?

!

1. “Metadata” is stored in a SQL database (preferable

Postgres): Users, workflows, histories, dataset

metadata… everything a user creates interacting

with Galaxy except the raw contents of datasets

!

2. Dataset contents is stored in file_path, typically

database/files objectstore

!

3. Data used by tools that is not user specific is

stored in

Data Abstraction

Disk Disk S3 iRODS

Galaxy

Object

Store

Data Abstraction

>>> fh = open(dataset.file_path, 'w')

>>> fh.write(‘foo’)

>>> fh.close()

>>> fh = open(dataset.file_path, ‘r’)

>>> fh.read()

>>> update_from_file(dataset, file_name=‘foo.txt’)

>>> get_data(dataset)

>>> get_data(dataset, start=42, count=4096)

Data Abstraction
Distributed Object Store

FS FS FS FS

Galaxy

Distributed

Object Store

Distribution by weight

Zero weight

Data Abstraction
Benefits

• Grow beyond original capacity

• Avoid migrating data offline

• Tier storage

• Let your users bring their own storage

• Use resources w/o a shared filesystem (with iRODS)

• Remove IO bottlenecks

Data tables and location files

Data tables provide an abstraction which tools use

to access indexes of data which can be accessed on

the local filesystem

Tool config reference data table by name with abstract columns

Data tables configuration maps abstract data table to a concrete file

Which can provide any information, but typically locations of data

at a given site

Data Managers

Special class of Galaxy tool which allows for the

download and/or creation of data that is stored

within Data Tables and their location files.

!

These tools handle e.g. the creation of indexes and

the addition of entries/lines to the data table / .loc

file via the Galaxy admin interface.

!

Data Managers can be defined locally or installed

through the Tool Shed.

!

Available in: Admin GUI, Workflows, API

Special class of Galaxy tool

Writes a JSON description of new data table entries

as content of tool output file

This creates a new entry in the Tool Data Table:

Where the sacCer2.fa file was placed by the tool in the
output file’s extra_files_path

data_manager entry inside <data_managers> tag in

data_mananger_conf.xml

informs Galaxy about

 which data tables to expect for new entries

 special handling of provided JSON values and files

Q&A

