Integrated variant detection

Erik Garrison, Boston College



Overview

Single-sample variant detection
Population-based variant detection
Our implementation (freeBayes)

Challenges for population-based variant
detection.



What varies?

e Given short read data from some individual,
how do we determine what true

polymorphisms they have relative to another?

* A few approaches come to mind:

— Count alternate (non-reference) alleles
— Use a binomial test

— Integrate quality scores from reads



Maximum likelihood variant detection

* Short reads are noisy
e Alignments are noisy

* Even with a relatively low base error rate for

short read sequence data, we need coverage
to ensure that we have sufficient power.



~Error rate versus coverage, 1-20x

o
Al

RN

10x coverage

1x coverage

Haploid detection error rate:
log10(bp per false detection)
5 10 15
| | |
bl

o

0.00 0.02 0.04 0.06 0.08 0.10
Sequencing base error rate



Maximum likelihood variant detection

Looking at one sample is informative, but
imited by per-sample coverage.

Using a single-sample model is difficult
pecause we lack power to filter out artifacts
which result from errors within our
sequencing and alignment system:

o paralogs
o spurious mismatch agreement
o systematic misalighment



Population calling

* 1sample is noisy

* Your study may obtain data from many. Why
not use them together to improve the power

of your variant detection?



Bayesian population-level variant
detectors and genotypers

freeBayes

— Marth Lab, Boston College:
http://bioinformatics.bc.edu/marthlab/

GATK

— http://www.broadinstitute.org/gsa/wiki/
index.php/Unified genotyper

glfMultiples
— http://genome.sph.umich.edu/wiki/GlfMultiples

others ...




How does a population model cope
with errors?

* Directly, via incorporation of information from
multiple samples.

* |t’s much less likely to miss or miss-call
variants with even low frequency in the
population.

— In the 1000 Genomes project, we see error rates

(both FP and FN) drop very low at alternate allele
count >10, ~ 1% allele frequency.



Sites found in the 1000G working low-coverage consensus against sites in 688 exomes
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Sites found in 688 exomes against sites in the 1000G low-coverage consensus
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Bayesian detection, multiple samples

 We can improve power by collecting our
samples together in a Bayesian framework.

* Because population-based variation looks very
different than sequencing error and alignment
artifact, we can compare what we observe
against prior expectations about the way that
alleles are distributed in a population.

* The natural way to do this is in a Bayesian
setting.
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A population of samples

Genotyping across samples

l Prior probability of the genotyping
V
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Sequencing observations from the entire population

Data likelihoods

G_i = genotype for a sample, B_i = observations for a sample



The Neutral Model

* Most variation in populations is relatively
neutral with reflect to base context.

* Assuming neutrality, we can build some simple
mathematical descriptions of the probability
of observing a given set of alleles and
genotypes at a given locus.

* We can use this model to integrate data
likelihood estimates from a population of

samples.



Genotype sampling probability

* ~ Hardy-Weinberg Equilibrium (as used in
other callers).

* Genotypings like this: AB, AB, AB, AB, AB, AB
have much lower probability than AA, AA, AB,
BB, AA, AB, AA.

* (Technical: discrete scaling allows us to use
numerical integration methods....)



Allele frequency prior probability:
Ewens’ sampling formula

* Provides the probability of a given set of allele
frequencies at a locus given an expected
diversity rate (we use estimated pairwise
diversity ~0.001).

* Seamlessly incorporates multiple alleles.
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Technical issues

* Posterior integration... ;o  _ (PGi,....G) T, P(BIGY)

— freeBayes uses a greedy method centered on the
data likelihood maximum (OK in most cases due to
extreme “spikiness” of the distribution)

* Maximum a posteriori estimation

— Convergent, greedy method: local search followed
by gradient ascent.

— Provides a decent balance of speed and sensitivity
relative to MCMC approaches often used.

— Deterministic



Finding the posterior maximum
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All together now...



SNPs, INDELs, and MINPs

Abstract representation of alleles allows
freeBayes to simultaneously call all these classes.

Piping BAM input allows for base quality
recalibration methods, INDEL realignment, gap
opening realignment, and other approaches on
the fly, without rewriting BAM files.

Call all small variants in one pass over the data.

Full support for poly-allelic sites (>2 present
alleles).



Polyploidy, variable copy number, and
pooled sequencing analysis

* We use a fully generalizeable mathematical
model, allowing for per-sample, per-region
specification of ploidy.

* Pooled sequencing is a special case of variable
ploidy, and is enabled via a flag to freeBayes
and the specification of ploidy == the number
of genomic copies in the pooled sample.



Combined variant output

(VCF 4.1)
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+ Sample-specific genotyping information (not shown)



Variant detection pipeline
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Problems with population-level variant
detection

* With present callers, you’ll need ALL the
alignments from the samples you want to
include in the population.

— This is good if you want to use complex priors

involving read positional information, allele
balance across all heterozygotes,

— But this is bad if you don’t have 50TB of storage
space available!



Solution: use a VCF file to describe the
population allele frequencies and sites

* Read sites and allele frequencies from a VCF
file, such as that produced by the 1000
Genomes project.

* Report results for input samples at all sites,
conditioned on allele frequencies provided by
the input.

* Implementation in freeBayes ongoing

— tabix indexing system for VCF files (allows data
parallelization via analysis targeting).



Adding prior variants
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Benefits of VCF-derived variant priors

Genotype your samples at known sites.

Variations with low supporting information
can still be called.

No need to shuffle around dozens of terabytes
of BAM alignments, or process them!

Priors are unlikely to overwhelm true variant
sites (testing is underway to balance this).



FreeBayes and Galaxy

 We’'ve done preliminary work integrating
freeBayes into the Galaxy framework:
— https://bitbucket.org/galaxy/galaxy-central/src/

2f84c42a548a/tools/human genome variation/
freebayes.xml|

— But we want to know more about how Galaxy
users envision using freeBayes!



FreeBayes and Galaxy, plans

* Incorporation of data parallelization
framework (aka map+reduce) for freeBayes.

* |Integration of of described VCF input system
into Galaxy.

* VCF filtering systems for post-processing
(vcflib).
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Single-sample maximum-likelihood
Bayesian model, no errors

true alleles observations multinomial sampling probability
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s_i = number of observations
genotype k_i = number of observed alleles

o’_j = number of observations of allele

f i j=frequency of allele in genotype

m_i = sample ploidy




Single-sample maximum-likelihood
Bayesian model, incorporating errors

error estimate via
sampling probability base qualities
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S_i = number of observations

k_i = number of observed alleles

o’_j = number of observations of allele
f i j=frequency of allele in genotype
m_i = sample ploidy



A population of samples

Genotyping across samples

l Prior probability of the genotyping
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Genotype priors

The integration of allele frequency and genotype frequency information is a common theme
among callers using this approach. We break our genotype prior term into its
subcomponents like this:

P(Gi,...,Gn) = P(G1,....Gu O fiyeo o f)

P(Gy,....,Gu OV Fryeo i ) = P(Gyy .. Gl frs e oo F)P(Frs oo F)

Now we have two prior components which are very straightforward to model.



Genotype sampling probability

The probability of sampling a given genotyping
across all samples, a-priori, given a specific
allele frequency distribution

(Multiset permutations of alleles in genotypes * multinomial sampling probability)

P(leﬂGn‘flﬂfk)




Allele frequency prior probability:
Ewens’ sampling formula

* Provides the probability of a given set of allele
frequencies at a locus given an expected
diversity rate (we use estimated pairwise
diversity ~0.001).

* Seamlessly incorporates multiple alleles.
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