
Galaxy in 
Production

Nate Coraor
Galaxy Team

Penn State University



Galaxy runs out of the 
box!

•Simple download, setup, and install design:

% hg clone http://bitbucket.org/galax...

% sh run.sh

•Great for development!

•Not designed to support multiple users in a 
production environment with default configuration



But more powerful 
scenarios are supported

•By default, Galaxy uses:

•SQLite

•Built-in HTTP server for all tasks

•Local job runner

•Single process

•Simplest error-proof configuration



Groundwork for 
scalability



Start with a clean 
environment

• Galaxy becomes a managed system service

• Give Galaxy its own user

• Don't share database or db users

• Make sure Galaxy is using a clean Python 
interpreter: virtualenv, or compile your own

• Galaxy can be housed in NFS or other 
cluster/network filesystems (has been tested w/ 
GPFS)



Basic
Configuration



Disable the developer 
settings

• use_interactive = False - Not even safe (exposes 
config)

• use_debug = False - You'll still be able to see 
tracebacks in the log file, doesn't load response 
in memory



Get a real database

•SQLite is serverless

•Galaxy is a heavy database 
consumer

•Locking will be an immediate 
issue

•Migrating data is no fun

•Setup is very easy: 
'database_connection = 
postgres://'



Offload the menial tasks: 
Proxy

• Directly serve static content faster 
than Galaxy's HTTP server

• Reduce load on the application

• Caching and compression

• Load balancing (more on that 
later)

• Hook your local authentication 
and authorization system



Metadata
Detection

• Setting metadata is CPU intensive and will make 
Galaxy unresponsive

• Make a new process (better yet, run on the 
cluster!)

• All you need is: 'set_metadata_externally = 
True'

• Run the data source tools on the cluster if they 
have access to the Internet

• Remove 'tool = local:///' from config file



Advanced 
Configuration



Python and threading

• Galaxy is multi-threaded.  No problem, right?

• Problem...  Enter the Global Interpreter Lock

• Guido says: "run multiple processes instead of 
threads!"



Galaxy's multiprocess 
model

• One job manager - responsible for preparing and finishing 
jobs, monitoring cluster queue

• Many web servers

• Doesn't really need IPC, job notification through database



Defining extra servers is 
easy

[server:web_0]

port = 8000

[server:web_1]

port = 8001

[server:web_2]

port = 8002

...

[server:runner_0]

port = 8100



Let your tools run free: 
Cluster

• Move intensive processing (tool 
execution) to other hosts

• Frees up the application server to serve 
requests and manage jobs

• Utilize existing resources

• No job interruption upon restart

• Per-tool cluster options

• Generic DRMAA support: SGE (and 
derivatives), LSF, PBS Pro, Condor?

• It's easy: Set 'start_job_runners' and 
'default_cluster_job_runner' and go!

• If your cluster has Internet access, run 
upload, UCSC, etc. on the cluster too



Tune Database 
Parameters

• Let Postgres (not Galaxy) keep the result in 
memory.  
'database_engine_option_server_side_cursors = 
True'

• Allow more database connections.  
'database_engine_option_pool_size = 10'  
'database_engine_option_max_overflow = 20'

• Don't create unnecessary connections to the 
database.  'database_engine_option_strategy = 
threadlocal'



Downloading data
from Galaxy



Downloading data
from the proxy



Downloading data
from the proxy

• The proxy server can send files much faster than Galaxy's 
internal HTTP server and file I/O methods

• Reduce load on the application, free the process

• Restartability

• Security is maintained: the proxy consults Galaxy for authZ

• Proxy server requires minimal config and then:

• nginx: 'nginx_x_accel_redirect_base = /_download'

• Apache: 'apache_xsendfile = True'



Uploading data
to Galaxy



Uploading data
to the proxy



Uploading data
to the proxy

• The proxy is also better at receiving files than 
Galaxy

• Again, reduce load on the application, free the 
process

• Again, restartability

• More reliable

• Slightly more complicated to set up, and nginx 
only



How do we run
Galaxy Main?





All the details:
usegalaxy.org/production



Automating Galaxy
Dannon Baker
Galaxy Team

Emory University



•Simple URIs

•Collections: 
http://example.org/resources/

•Elements: 
http://example.org/resources/42

•The method performed defines the 
operation

•HTTP GET/PUT/POST/DELETE

RESTful API



Galaxy's REST Overview

•Uses generated API keys for per-user 
authentication

•No username/password

•No credential caching (not REST!)

•Request parameters and responses are in 
JSON (JavaScript Object Notation)

•Maintains security

•Enable with enable_api = True in config



GET Example

» GET /api/libraries?key=966354fc14c9e427cee380ef50a72a21

« [

«   {

«     'url': '/api/libraries/f2db41e1fa331b3e',

«     'id': 'f2db41e1fa331b3e',

«     'name': 'Library 1'

«   }

« ]



Modules

•Libraries

•Users and Roles

•Sample Tracking

•Forms

•Workflows

•Histories *



Scripted Usage

•More in galaxy/scripts/api

•Share yours - Galaxy tool shed

import os, sys, traceback

from common import update

try:

    data = {}

    data[ 'update_type' ] = 'request_state'

except IndexError:

    print 'usage: %s key url' % os.path.basename( sys.argv[0] )

    sys.exit( 1 )

update( sys.argv[1], sys.argv[2], data, return_formatted=True )



Extending the API

•It's still an early beta

•Wrap controller methods

•It's easy!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

