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Galaxy runs out of the 
box!

•Simple download, setup, and install design:

% hg clone http://bitbucket.org/galax...

% sh run.sh

•Great for development!

•Not designed to support multiple users in a 
production environment with default configuration



But more powerful 
scenarios are supported

•By default, Galaxy uses:

•SQLite

•Built-in HTTP server for all tasks

•Local job runner

•Single process

•Simplest error-proof configuration



Groundwork for 
scalability



Start with a clean 
environment

• Galaxy becomes a managed system service

• Give Galaxy its own user

• Don't share database or db users

• Make sure Galaxy is using a clean Python 
interpreter: virtualenv, or compile your own

• Galaxy can be housed in NFS or other 
cluster/network filesystems (has been tested w/ 
GPFS)



Basic
Configuration



Disable the developer 
settings

• use_interactive = False - Not even safe (exposes 
config)

• use_debug = False - You'll still be able to see 
tracebacks in the log file, doesn't load response 
in memory



Get a real database

•SQLite is serverless

•Galaxy is a heavy database 
consumer

•Locking will be an immediate 
issue

•Migrating data is no fun

•Setup is very easy: 
'database_connection = 
postgres://'



Offload the menial tasks: 
Proxy

• Directly serve static content faster 
than Galaxy's HTTP server

• Reduce load on the application

• Caching and compression

• Load balancing (more on that 
later)

• Hook your local authentication 
and authorization system



Metadata
Detection

• Setting metadata is CPU intensive and will make 
Galaxy unresponsive

• Make a new process (better yet, run on the 
cluster!)

• All you need is: 'set_metadata_externally = 
True'

• Run the data source tools on the cluster if they 
have access to the Internet

• Remove 'tool = local:///' from config file



Advanced 
Configuration



Python and threading

• Galaxy is multi-threaded.  No problem, right?

• Problem...  Enter the Global Interpreter Lock

• Guido says: "run multiple processes instead of 
threads!"



Galaxy's multiprocess 
model

• One job manager - responsible for preparing and finishing 
jobs, monitoring cluster queue

• Many web servers

• Doesn't really need IPC, job notification through database



Defining extra servers is 
easy

[server:web_0]

port = 8000

[server:web_1]

port = 8001

[server:web_2]

port = 8002

...

[server:runner_0]

port = 8100



Let your tools run free: 
Cluster

• Move intensive processing (tool 
execution) to other hosts

• Frees up the application server to serve 
requests and manage jobs

• Utilize existing resources

• No job interruption upon restart

• Per-tool cluster options

• Generic DRMAA support: SGE (and 
derivatives), LSF, PBS Pro, Condor?

• It's easy: Set 'start_job_runners' and 
'default_cluster_job_runner' and go!

• If your cluster has Internet access, run 
upload, UCSC, etc. on the cluster too



Tune Database 
Parameters

• Let Postgres (not Galaxy) keep the result in 
memory.  
'database_engine_option_server_side_cursors = 
True'

• Allow more database connections.  
'database_engine_option_pool_size = 10'  
'database_engine_option_max_overflow = 20'

• Don't create unnecessary connections to the 
database.  'database_engine_option_strategy = 
threadlocal'



Downloading data
from Galaxy



Downloading data
from the proxy



Downloading data
from the proxy

• The proxy server can send files much faster than Galaxy's 
internal HTTP server and file I/O methods

• Reduce load on the application, free the process

• Restartability

• Security is maintained: the proxy consults Galaxy for authZ

• Proxy server requires minimal config and then:

• nginx: 'nginx_x_accel_redirect_base = /_download'

• Apache: 'apache_xsendfile = True'



Uploading data
to Galaxy



Uploading data
to the proxy



Uploading data
to the proxy

• The proxy is also better at receiving files than 
Galaxy

• Again, reduce load on the application, free the 
process

• Again, restartability

• More reliable

• Slightly more complicated to set up, and nginx 
only



How do we run
Galaxy Main?





All the details:
usegalaxy.org/production



Automating Galaxy
Dannon Baker
Galaxy Team
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•Simple URIs

•Collections: 
http://example.org/resources/

•Elements: 
http://example.org/resources/42

•The method performed defines the 
operation

•HTTP GET/PUT/POST/DELETE

RESTful API



Galaxy's REST Overview

•Uses generated API keys for per-user 
authentication

•No username/password

•No credential caching (not REST!)

•Request parameters and responses are in 
JSON (JavaScript Object Notation)

•Maintains security

•Enable with enable_api = True in config



GET Example

» GET /api/libraries?key=966354fc14c9e427cee380ef50a72a21

« [

«   {

«     'url': '/api/libraries/f2db41e1fa331b3e',

«     'id': 'f2db41e1fa331b3e',

«     'name': 'Library 1'

«   }

« ]



Modules

•Libraries

•Users and Roles

•Sample Tracking

•Forms

•Workflows

•Histories *



Scripted Usage

•More in galaxy/scripts/api

•Share yours - Galaxy tool shed

import os, sys, traceback

from common import update

try:

    data = {}

    data[ 'update_type' ] = 'request_state'

except IndexError:

    print 'usage: %s key url' % os.path.basename( sys.argv[0] )

    sys.exit( 1 )

update( sys.argv[1], sys.argv[2], data, return_formatted=True )



Extending the API

•It's still an early beta

•Wrap controller methods

•It's easy!
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