

The Genomics Virtual Laboratory

Andrew Lonie

Victorian Life Sciences Computation Initiative, University of Melbourne

NeCTAR funded nationally distributed platform for genomics, built on the Research Cloud and RDSI

NeCTAR funded nationally distributed platform for genomics, built on the **Research Cloud** and **RDSI**

- 1. Compute & workflow platforms
- 2. Tutorials, protocols
- 3. UCSC browser, datasets

http://genome.edu.au

In practice:

- 1. A way to build on-demand analysis environments for genomics
- 2. A set of prebuilt analysis and visualisation servers for tutorials and general use
- 3. Resources to teach genomics, and regular workshops using them
- 4. Development work exploring new capabilities

1. Build on-demand

4. R&D

2. Prebuilt servers for general use

3. Tutorials and workshops

2. Preconfigured GVL servers

<u>http://genome.edu.au</u> → USE

Galaxy-tut

http://galaxy-tut.genome.edu.au

- For GVL Galaxy-based tutorials
- Has tools, datasets and Galaxy histories pre-installed

Galaxy-Qld

http://galaxy-qld.genome.edu.au

- For (Galaxy-based) research use
- Has lots of disk space, scalable as required

UCSC Browser <u>http://ucsc.genome.edu.au</u>

• Local mirror of US-based browser - quicker to upload your tracks, etc

3. Resources and tutorials

<u>http://genome.edu.au</u> → LEARN

Tutorials and Protocols based on Galaxy and

- command line
 - RNA-Seq DGE
 - Variant detection
 - small RNA
 - Microbial genome assembly
 - others

Some of these are based on GVL-developed tools

In this tutorial we cover the concepts of RNA-Seq & differential gene expression (DGE) analysis

1. Build an analysis environment

<u>http://genome.edu.au</u> → GET

Why would you want to build?

Flexibility

- Configure tools, ref data
- Command line interface
- Availability
- Scalability

Privacy

Most importantly, maybe: Control

GET a GVL

<u>http://genome.edu.au</u> → GET

Building (deploying and running) a GVL instance:

- 1. Create a CloudBioLinux server VM
- 2. Download and install a preconfigured Galaxy
- 3. Attach pre-populated indexed genomes data
- 4. Start Galaxy
- 5. Add extra compute nodes as required

Deploying and running a GVL

http://launch.genome.edu.au

Cloudman = Middleware for building, distributing and managing cloud-based platforms, especially Galaxy

Conclusions: With the enabled customization and sharing of instances, CloudMan can be used as a platform for collaboration. The presented solution improves accessibility of cloud recourses tools, and data to the level of an

GET what GVL?

	Personal GVL	Server GVL	Cluster GVL
Suitable for	Single user	Single user Small group/lab	Large groups Institutions
Storage	60GB	100-5000GB	TBs
Compute	2 cores	8-64* cores	>50 cores
Requires	NeCTAR account	NeCTAR allocation: Compute and Volume storage	Large NeCTAR allocation of compute + user-provided fast storage
Runs on	Any Research Cloud node	RC nodes with volumes	RC nodes co-located with fast file system
Setup	Automatic via website	Automatic via website	Collaboration with GVL team
Configuration	No configuration required	Some configuration to tune analyses	Dedicated management

	Personal GVL	Server GVL	Cluster GVL
Suitable for	Single user	Single user Small group/lab	Large groups Institutions
Storage	60GB	100-5000GB	TBs
Compute	2 cores	8-64* cores	>50 cores
Requires	NeCTAR account	NeCTAR allocation: Compute and Volume storage	Large NeCTAR allocation of compute + user-provided fast storage
Runs on	Any Research Cloud node	RC nodes with volumes	RC nodes co-located with fast file system
Setup	Automatic via website	Automatic via website	Collaboration with GVL team
Configuration	No configuration required	Some configuration to tune analyses	Dedicated management

Initiatives: NeCTAR & RDSI

Initiatives: Genomics Virtual Lab

4. Research and Development

http://genome.edu.au

What's next for GVL?

Genomics is characterised by:

- Large data
- Data parallel computation
- Moving best practice, tools

Case Study: Human exome analysis

Recommendations

- 1. Separate 'data' and 'compute'
- physically and conceptually
- 2. Have a data 'home'
- Secure, Long term
- 3. Have a HPC compute platform, well managed

<u>Don't buy/manage your own if you can</u>

avoid it!

- High speed linked to 'Data Home'
- 4. Find a data sharing and publishing option

GVL 2015-

Wide user base

• students, researchers, tool developers

Broadening from genomics:

• Proteomics GVL, Metabolomics GVL

Platform for tools development and distribution

Training sessions at least fortnightly, closer ties with Galaxy folk internationally

genon

Entire data-compute cycle on the cloud

Making the GVL possible

Go8 Universities

- The University of Queensland
- The University of Melbourne
- Monash University
- The University of Sydney
- The University of Western Australia

Medical Research Institutes

- The Garvan Institute of Medical Research
- Victor Chang Cardiac Research Institute
- Baker IDI Heart and Diabeties Institute
- Peter MacCallum Cancer Centre

eResearch Agencies

- Queensland Facility for Advanced Bioinformatics (QFAB)
- Queensland Cyber Infrastructure Foundation (QCIF)
- Life Sciences Computation Centre (LSCC) at the VLSCI
- Victorian eResearch Strategic Initiative (VeRSI)

National Agencies

- NeCTAR, DIISRTE
- CSIRO
- EMBL Australia
- Bioplatforms Australia (BPA)
- Australian Genome Research Facility
 (AGRF)
- Australian National Data Service (ANDS)