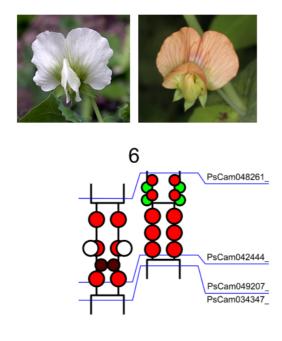
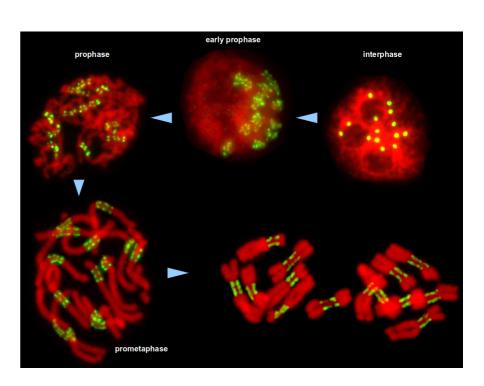


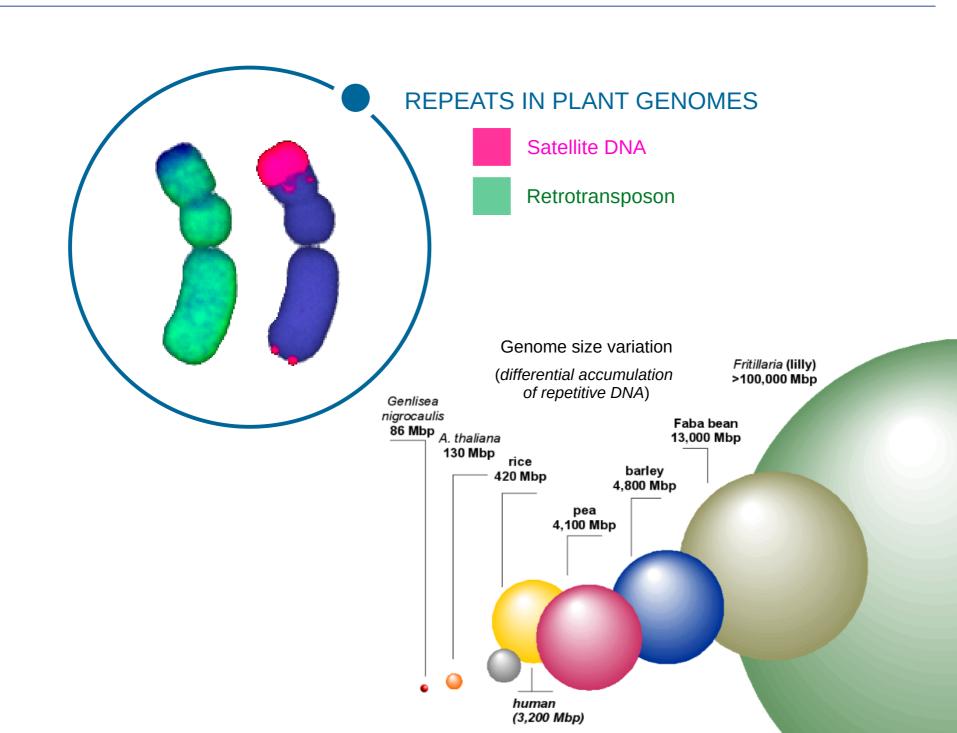
Publishing Your Tools in Your Own Public Galaxy Server

Biology Centre CAS

Laboratory of Molecular cytogenetics

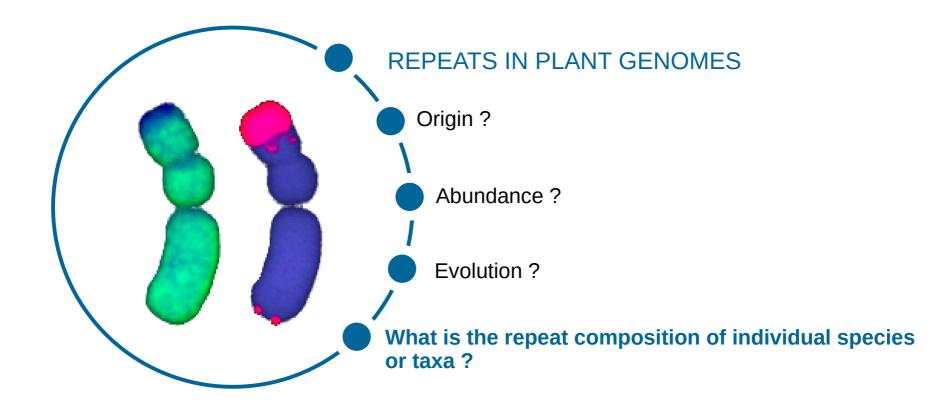



Petr Novak


Plant Cytogenetics and Genomics

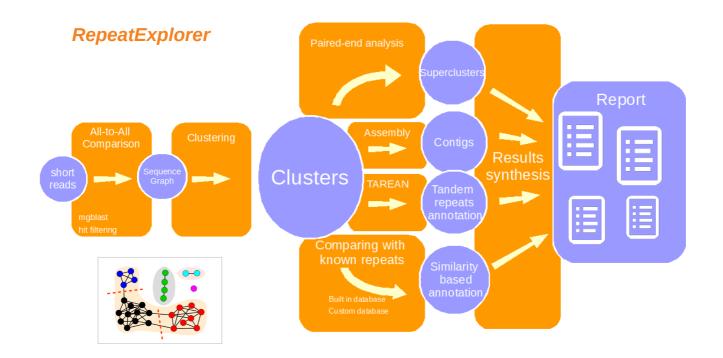
We investigate


- sequence composition and evolution of plant genomes
- chromosome biology and epigenetics
- centromeres and kinetochore



Motivation

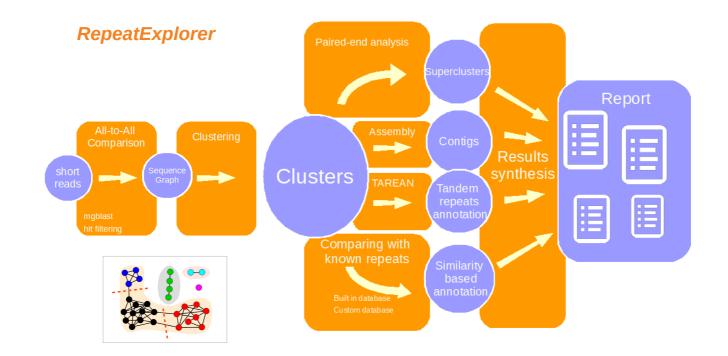
Motivation


Introduction of next generation sequencing in ~2005:

→ getting sequence data was no longer a limiting factor ...

... but there were no computational tools for repetitive DNA analysis from short reads

RepeatExplorer pipeline


- Unique principle of repeat identification from low-pass WGS data (graph-based clustering)
- De novo identification of repeats, no reference DBs, any genome
- Works with short sequence reads (100 nt), no assembly
- Repeat annotation in subsequent steps
- Additional tools

 2007
 ...
 2010
 ...
 2013
 2014
 ...
 2016
 ...
 2018
 2019

• First paper on repeat clustering from NGS data (Macas et al. 2007) • Introduction of graphbased clustering (Novak et al. 2010) • RepeatExplorer in Galaxy (Novak et al. 2013)

commandline version

NGS data

2007)

(Macas et al.

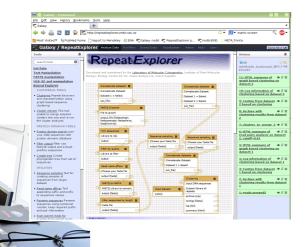
200	07	 2010		2013	2014	 2016	 2018	2019
• First parepeat	•	 Introduction of graph- based 	on	• RepeatExplorer in Galaxy (Novak et al. 2013)				

commandline version

clustering (Novak et al.

2010)

Why we choose Galaxy platform?


- We need to provide are tools to user without access to suitable hardware
- Original pipeline was difficult to setup (our user are usually biologists without experience with computers, Linux,...)
- We needed a job management/scheduling to efficiently utilize our HW
- We needed some kind of user management (Data and job quotas)
- We wanted to reuse our old PBS cluster
- Good documentation

 2007
 ...
 2010
 ...
 2013
 2014
 ...
 2016
 ...
 2018
 2019

• First paper on repeat clustering from NGS data (Macas et al. 2007)

- Introduction of graphbased clustering (Novak et al. 2010)
- RepeatExplorer in Galaxy (Novak et al. 2013)

commandline version Public web-based server (cluster of 12 nodes)

First setup:

- Tool definition
- Tool requirement definition
- PBS cluster setup
- NFS storage setup
- Old 'desktops'

2007 2010 2013 2014 2018 2019 2016 ...

• First paper on repeat clustering from NGS data (Macas et al. 2007)

 Introduction of graphbased clustering (Novak et al. 2010)

 RepeatExplorer in Galaxy (Novak et al. 2013)

commandline version Public web-based server (cluster of 12 nodes)

Additional tools

• TAREAN

• ChIP-seq Mapper

ProfRep

REXdb database

• DANTE

Elixir PROJECT \$\$\$

Server migration to **CERIT** (start)

2007	2010	2013	2014	 2016		2018	
• First paper on	• Introduction	• RepeatExplorer	eli ir czech REPUBLIC	Additional tools			
repeat clustering from NGS data	of graph- based clustering (Novak et al. 2010)	in Galaxy (Novak et al. 2013)		• TAREAN		• ChIP-seq Mapper • ProfRep	>
(Macas et al. 2007)				• REXdb data	base	• DANTE	
	command- line version	Public web-based server		Elixir PROJE	CT \$\$\$		
	mic version	(cluster of 12 nodes)		Server migrat CERIT (start)	ion to	Server in full use (+ data storage)	

Better Hardware

Flexible

Administered by IT proffesionals

2019

year	number of jobs	CPUdays
2017	8656	30,891.5
2018	12504	29,126.6
2019	17367	29,984.1
2020	139925	43,092.2
2021	58036	15,947.5

Frequently used and cited:

RepeatExplorer principle (BMC bioinformatics, 2010)	249 x
RepeatExplore Galaxy server paper (Bioinformatics 2013)	307 x
TAREAN - New tool on Galaxy server (NAR, 2017)	75 x
REXdb database – (Mobile DNA, 2019)	50 x
Nature Protocols (2020) – Galaxy oriented protocols ho to use RI	= server

2007 2010 2013 2014 2016 2018 2019

• First paper on repeat clustering from NGS data (Macas et al. 2007)

 Introduction of graphbased clustering (Novak et al. 2010)

commandline version RepeatExplorer in Galaxy (Novak et al. 2013)

Public web-based server (cluster of 12 nodes)

Additional tools

• TAREAN

- ChIP-seq Mapper
- ProfRep
- REXdb database DANTE

Elixir PROJECT \$\$\$

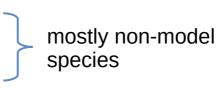
Server migration to **CERIT** (start)

Server in full use (+ data storage)

Training – annual practical workshops – Galaxy oriented

- ~ 40 participants
- 60-70% foreigners, often PhD students
- 3 days, mini-conference + practical training

2007	2010 .	2013	2014		2016		2018	4
 First paper on repeat 	• Introduction of graph-	• RepeatExplorer in Galaxy (Novak	eli ir czech REPUBLIC		• ProfRe			
clustering from	based clustering (Novak et al. 2010)	et al. 2013)					ChIP-seq MapperProfRepDANTE	
NGS data (Macas et al. 2007)								
	command- line version	Public web-based server (cluster of 12 nodes)						

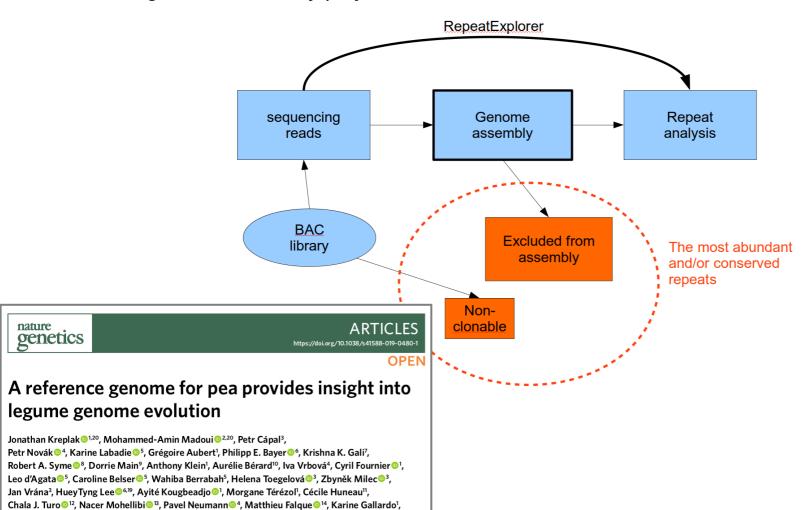

2019

Additional Benefits of Having RepeatExplorer on Galaxy Server:

- Tool integration, interoperability
- Utilization of RepeatExplorer unrelated tools
 - Data pre-processing
 - Visualization
 - Genome browser integration
- Workflows, protocols sharing, data sharing
- Reproducibility
- Bug reports
- Lower barrier for less experienced users

Plants

- Over 100 species characterized so far
- Comparative studies
- Whole genome assembly projects



Plants

- Over 100 species characterized so far
- Comparative studies
- Whole genome assembly projects

Rebecca McGee 15, Bunyamin Tar'an 7, Abdelhafid Bendahmane 6, Jean-Marc Aury 5,

Plants

- Over 100 species characterized so far
- Comparative studies
- Whole genome assembly projects

PUBLISHED: 27 MAY 2016 | ARTICLE NUMBER: 16074 | DOI: 10.1038/NPLANTS.2016.74

Selfish supernumerary chromosome r as a mosaic of host genome and orga

Mihaela Maria Martisa, Sonja Klemmeb, Ali Mohammad Banaei-Moghaddamb, Fra Thomas Schmutzer^b, Uwe Scholz^b, Heidrun Gundlach^a, Thomas Wicker^d, Hana Simk Marie Kubaláková^e, Eva Bauer^f, Grit Haseneyer^f, Jörg Fuchs^b, Jaroslav Doležel^e, Ni and Andreas Houbenb,

⁹Institute of Bioinformatics and Systems Biology/Munich Information Center for Protein Sequences, Helmi Environmental Health, 85764 Neuherberg, Germany; ⁹Leilbniz Institute of Plant Genetics and Crop Plant R Centre, Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, Ceské Budéjovice : University of Zurich, 8008 Zurich, Switzerland; "Center of the Region Haná for Biotechnological and Agricul of Experimental Botany, Olomouc 77200, Czech Republic; and "Division of Plant Breeding and Applied G.

Edited by James A. Birchler, University of Missouri, Columbia, MO, and approved July 6, 2012 (received for

Supernumerary B chromosomes are optional additions to the basic set of A chromosomes, and occur in all eukaryotic groups. They differ from the basic complement in morphology, pairing behavior and inheritance and are not required for normal growth and

Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida

Aureliano Bombarely^{1†}, Michel Moser^{2†}, Avichai Amrad², Manzhu Bao³, Laure Bapaume⁴, Cornelius S. Barry⁵, Mattijs Bliek⁶, Maaike R. Boersma⁷, Lorenzo Borghi⁸, Rémy Bruggmann⁹, Marcel Bucher¹⁰, Nunzio D'Agostino¹¹, Kevin Davies¹², Uwe Druege¹³, Natalia Dudareva¹⁴, Marcos Egea-Cortines¹⁵, Massimo Delledonne¹⁶, Noe Fernandez-Pozo¹⁷, Philipp Franken¹³, Laurie Grandont¹⁸, J. S. Heslop-

Harrison¹⁹, J Diwa Malla Joëlle Muhle Didier Reinh M. Eric Schr L. Urbanus⁶ Julia Weiss¹ and Cris Ku

genetics

genetics

ARTICI

https://doi.org/10.1038/s41588-019-0

A reference genome for pea provides insight into legume genome evolution

Jonathan Kreplak 1,20, Mohammed-Amin Madoui 2,20, Petr Cápal 3, Petr Novák ^{⊙4}, Karine Labadie ^{⊙5}, Grégoire Aubert¹, Philipp E. Bayer ^{⊙6}, Krishna K. Gali³, Robert A. Syme 10 8, Dorrie Main, Anthony Klein, Aurélie Bérard, Iva Vrbová, Cyril Fournier 10 1, Leo d'Agata⁶, Caroline Belser⁵, Wahiba Berrabah, Helena Toegelová⁶, Zbyněk Milec⁶, Jan Vrána³, HueyTyng Lee^{® 6,19}, Ayité Kougbeadjo ^{® 1}, Morgane Térézol¹, Cécile Huneau¹¹, Chala J. Turo 12, Nacer Mohellibi 13, Pavel Neumann 12, Matthieu Falque 13, Karine Gallardo 1, Rebecca McGee 15, Bunyamin Tar'an 7, Abdelhafid Bendahmane 6, Jean-Marc Aury 5,

A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution

Massimo Iorizzo^{1,12}, Shelby Ellison¹, Douglas Senalik^{1,2}, Peng Zeng³, Pimchanok Satapoomin¹, Jiaying Huang³, Megan Bowman⁴, Marina Iovene⁵, Walter Sanseverino⁶, Pablo Cavagnaro^{7,8}, Mehtap Yildiz⁹, Alicja Macko-Podgórni¹⁰, Emilia Moranska¹⁰, Ewa Grzebelus¹⁰, Dariusz Grzebelus¹⁰, Hamid Ashrafi^{11,12}, Zhijun Zheng³, Shifeng Cheng³, David Spooner^{1,2}, Allen Van Devnze¹¹ & Philipp Simon^{1,2}

We report a high-quality chromosome-scale assembly and analysis of the carrot (Daucus carota) genome, the first sequenced genome to include a comparative evolutionary analysis among members of the euasterid II clade. We characterized two new polyploidization events, both occurring after the divergence of carrot from members of the Asterales order, clarifying the evolutionary scenario before and after radiation of the two main asterid clades. Large- and small-scale lineage-specific duplications have contributed to the expansion of gene families, including those with roles in flowering time, defense response, flavor, and pigment accumulation. We identified a candidate gene, DCAR_032551, that conditions carotenoid accumulation (Y) in carrot taproot and is coexpressed with several isoprenoid biosynthetic

ARTICLES

Plants

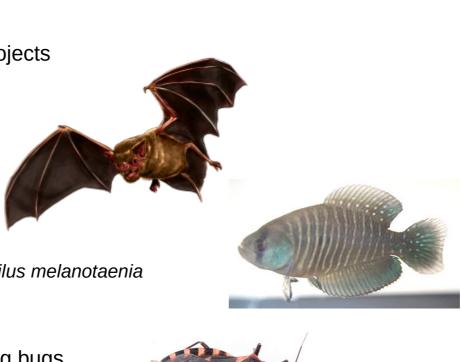
- Over 100 species characterized so far
- Comparative studies
- Whole genome assembly projects

Mammals

Bats, deer

Fish

Austrolebias charrua, Cynopoecilus melanotaenia

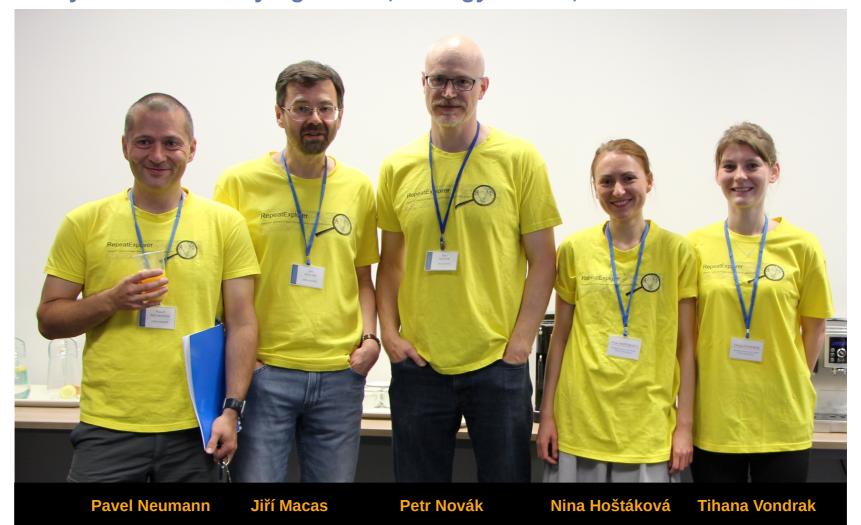

Insects

Locust, grasshoppers, kissing bugs

Worms

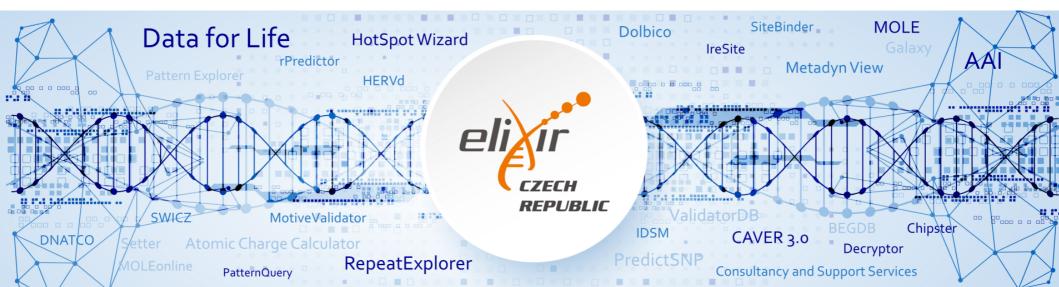
Soil helminths

Make you tools public


The team

Masaryk Univ. Brno: M. Macháč, I. Křenková, A. Křenek, Z. Salvet

CERIT / CESNET / ELIXIR (hardware)



Laboratory of Molecular Cytogenetics, Biology Centre, CAS

Thank you

Researchers

April 21

Educators & Trainers

April 28

WEBINAR SERIES

= Galaxy

Resources for...

Tool
Developers
May 12

Admin & Infrastructure Providers

Gianmauro Cuccuru Lucille Delisle

May 26

10 am EDT 4 pm CEST