

Galaxy for Genomics-enabled Breeding

Star Yanxin Gao

yg28@cornell.edu

Introduction

Star Yanxin Gao, Ph.D., PMP

Application Specialist, IT

- Enterprise Breeding System (2020+)
- GOBii (2015-Present)
- Breeding and Genetics
 - Corn, DAS (2008-2015)
 - Soybean, VT (2004-2008)
 - Vegetables, Cornell (1999-2004)

Outline

- 1. Project
- 2. Products
- 3. Partnership

GS-Galaxy Project (1st *P***)**

MAS

GOBii Mission

Transform breeding by enabling genomic—assisted selection as **routine** breeding applications

KIRIBAT

GS-Galaxy Project (1st *P***)** People

Cornell University

- Angel Villahoz-Baleta (Former)
- Star Yanxin Gao
- Kelly Robbins
- Liz Jones
- Yaw Nti-addae

CIMMYT

- Victor Ulat
- Susanne Dresigacker
- Mike Olsen
- Umesh Rosyara
- Xuecai Zhang
- Juan BURGUEÑO
- Fernado Toledo

Collaborators

Alexis Dereeper

Greenland

RAZIL

- Michael Quinn
- Paulino Perez
- Jose Crossa
- Clay Sneller
- Kate Dreher
- Tom Hagen
- Yoseph Beyene
- Manje Gowda
- Nicholas Santantonio
- Isaak Tecle
- Milcah Kigoni
- Iain Milne
- Gordon Stephen
- Hiro Iwata
- Dave Clements

IRRI

• Venice Juanillas

- Ramil Mauleon (Former)
- Ken McNally
- Josh Cobb
- Carlos Ignacio
- Dmytro Chebotarov
- Nick Alexandrov Former)
- Jessica Rutkoski (Former)
- Juan Arbelaez (Former)

ICRISAT

- Selvanayagam Siva
- Rajeev Varshney

Re Anuterdan

ALS CROTET

- Abhishek Rathor
- Manish Roorkiwal
- Hima Kudapa
- Santosh Deshpande

GS-Galaxy Project (1st *P***)**

Milestones

1st milestone: Minimum set of GS tools installed in Galaxy- June 2018:

- ➤ GS workflow mapped for each crop and common minimum desirable tools and features identified.
- Pipeline developed with minimum desirable features.
- Basic and common tool components put in place.
- > Tested with well curated test datasets for each crop by product owners and testers

2nd milestone: Production server with published GS workflows-**June 2019**

- Customized workflows for each crop.
- ▶ v1 for fully functioning GS pipeline.
- ➢ Working pipeline available to centers.
- > Training and workshop to users other than product owners and more users start using pipeline and tools

3rd milestone: GOBII integrated as data source for Galaxy-June 2020

- Deliver a complete pipeline with no data manipulation required.
- > Access data extract for phenotypes and genotypes from Galaxy pipeline using remote Galaxy web servers.
- ➢ Found a solution for storing the output data long term so it can easily be accessed.
- Pipelines widely used within CG and outside CG in future.

·	
🔁 Galaxy / EiB-demo	
Tools	
search tools	
Get Data	
Genomic Selection	Geno
Data Format Conversion	<u>BL</u>
Marker Selection	(m
Imputation	Ha
Cluster Analysis	ba
GWAS tools	cri
Text Manipulation	Nu
Collection Operations	en
Filter and Sort	nu
Join, Subtract and Group	<u>Sa</u>
<u>Statistics</u>	sai
<u>Graph/Display Data</u>	an
VCF intersect	Pa
	Ma
HTPG TOOLS	ph
<u>Pre-genotyping</u>	Pa
<u>Post-genotyping</u>	Ma
TOOLS FROM TOOLSHED	ph
CNITDI AV	GE
SHIPLAT	
GOBII TOOLS	Cr
Flapjack Tools	aci

Workflows

All workflows

GS-Galaxy **Products** (2nd **P**)

omic Selection

UP/BLUE calculator ultiple traits)

pmap filter Filter per SNPs sed on user-specified teria

imeric matrix encoder codes genotypes to meric

mple Matching compares mples between genotype d phenotype files

rallel Genotype-Phenotype atching genotype and enotype files

rallel Genotype-Phenotype atching genotype and enotype files

BV calculator

oss validation within and ross groups

Cluster Analysis

Calculate Distance Matrix from Genotype Data

SNPRelate GRM calculator

Get Distance Matrix from Genotype Data

Principal Component Analysis

Hybrid K-Means Clustering

K-Means Clustering

GWAS tools

Calculate Kinship from Genotype Data

Run PCA (Principal Component Analysis) on genetic data

Association using GLM (General Linear Model)

Association using MLM (Mixed Linear Model)

Imputation

Naive imputation using population mean or mode

Beagle imputation

Impute2 imputation

http://galaxy-demo.excellenceinbreeding.org/

GS-Galaxy **Products** (2nd **P**)

Enable routine genomic selection analysis

(multiple traits) <u>Hapmap filter</u> Filter per SNPs based on user-specified criteria

BLUP/BLUE calculator

Genomic Selection

- <u>Numeric matrix encoder</u> encodes genotypes to numeric
- Sample Matching compares samples between genotype and phenotype files

<u>Parallel Genotype-Phenotype</u> <u>Matching</u> genotype and phenotype files

Parallel Genotype-Phenotype Matching genotype and phenotype files

* 3

✤ 4

***** 6

GEBV calculator

<u>Cross validation</u> within and across groups

Adopted Slide from Clay Sneller

http://galaxy-demo.excellenceinbreeding.org/

GS-Galaxy Products (2nd *P***)**

http://galaxy-demo.excellenceinbreeding.org/

Genomic Selection workflows

Workflow1

Prediction of genomic breeding values Well defined training and prediction datasets, prediction within groups.

The prediction is based on the **GEBV** (Genomic Breeding Value Estimator) method implemented in BGLR R package.

Input: Genotyping matrix + Phenotyping file **Output**: Table of Predicted values for each trait

Access workflow

GS Workflow

GS Workflow

Workflow 1: Predict GEBVs in untested lines Workflow 2: Clustering/population structure Workflow 3: Cross validation Workflow 4: Genome-wide association study

Examples of graphical outputs

GOBII GS-Galaxy Products (2nd *P***) GOBII-Galaxy Integration**

6	Galaxy - Mozilla Firefox		
Galaxy X	Siva GOBii Project X GOBii_to_Galaxy/GOBii_ X +		
$\leftarrow \rightarrow C $) localhost:8080/?job_id=b3fe17e79980f9fc&identifer=kt0isIno8r ***		II\
🔁 Galaxy	Analyze Data Workflow Visualize - Shared Data - Help - User -		Using 34.3 KB
Tools 1 search tools 3	GOBII Extractor Get genotype data (Galaxy Version 0.0.1)	History search datasets	2 * II 8
Get Data <u>Upload File</u> from your computer	Log-in options Study name KASB ED: 7 20 2010	Unnamed history 19 shown, 49 deleted 28.13 KB	()
<u>GOBII Extractor</u> Get genotype data <u>GOBII Extractor</u> Get tokens SNP-seek Get Data	Advanced options	68: GOBII output	• • ×
Dynamic Options list	forward-breeding-DS-7.29.2019		Sase: ?
Send Data Collection Operations	✓ Execute	1 2 3 marker_name Samplel Samp snp0S0019 NN TT	4 5 Dle2 Sample3 Samp TT CC
Lift-Over Text Manipulation Convert Formats		snp0S0054 GT TT snp0S0096 CC CC snp0S0002 GG GG	ТТ ТТ СС СС GG GG
Filter and Sort Join, Subtract and Group		error	• • • ×
		0 0 4 d 2 a	> 🚰 💷 🚫 💽 Right Ctrl

GALAXY

– Galaxy PROJECT

Partnership Models

Adopt products

GALAXY

- Open-source and free
- Test with own datasets and use cases
- Download from toolshed

Community development

- Implement new tools
- Develop crop-specific workflows
- Connect with databases

- Number of registered users: 214
- Number of different crops/programs: 3 (rice, wheat, maize)
- Number of analyses/jobs performed: 14200
- Total job file sizes stored: 148 Gb
- Average file size: 4.2982 Mb

BrAPI

Invite to Partner with GS-Galaxy

EiB Demo Server:

1. Project <u>http://galaxy-demo.excellenceinbreeding.org/</u>

- 2. **Products** Publish tools to Galaxy main toolshed
- 3. Partnership
- Publish tools to Galaxy main toolshed Galaxy workshop at Cornell/BTI April, 2020

Thanks

International Maize and Wheat Improvement Center

IRRI

