
TEST-DRIVEN EVALUATION OF GALAXY
SCALABILITY ON THE CLOUD
Enis Afgan1,2, Derek Benson3, Nuwan Goonasekera1

1. VLSCI, University of Melbourne, Melbourne, Australia
2. Galaxy Team
3. Research Computing Centre, University of Queensland

Overview
• GVL Quality Assurance

•  Automated QA tests

• GVL Scaling
•  Many QA tests in parallel = Scalability test

Quality Assurance
Why?

With each new GVL release:
•  Do the tutorials run to completion? (Tedious and error prone to check

manually)
•  Need a quick way of knowing whether things are in reasonable shape
•  Need an end-user perspective on how things work

How?

•  Using Selenium
•  Run full workflows that exercise a complete set of tools
•  Check whether tool output == expected output
•  Also exercise typical use cases in UI

Demo
• Selenium in action

Writing a simple test

A library of test snippets available. Composed as desired for a more complex test.
Similar to Galaxy’s Twill based tests of internal API

Issues encountered
• Some elements have no ids = brittle xpaths

Performance Testing
Why?

•  How many workers do you need for an RNASeq wokshop with 20
users? What size should the workers be?

•  How does the GVL scale for different workloads?
•  What combinations of storage, instance types, workers etc. are

recommended?
•  We had mostly anecdotal evidence – needed a more data-driven

approach

How?

•  1 thread = 1 user = QA
•  Many threads = Multiple Users = Performance
•  Use Selenium Grid

Selenium Grid

Also tried PhantomJS+Ghostdriver as a lightweight Selenium backend – lots of potential – but
didn’t work out

What was done?
• Desirable combinations tested.
• All run on the NCI zone (identical hardware)
• Each test had independent resources (e.g. brand new

Galaxy/Cloudman instance launched, independent gluster
servers, nfs servers used etc.)

•  Transient cloud conditions not controlled for

Combinations tested
•  storage_type = { gluster, transient, volumes, nfs }
• machine_type = { m1.medium, m1.large, m1.xlarge }
• workers = { 0 to 5 workers }
• workloads = { rnaseq basic tutorial, deseq basic tutorial

 microbial assembly tutorial, variant
 detection basic tutorial }

•  simultaneous users = { 1, 5, 10, 20 }

Test loop
for storage_type in storage_types: (4)

 for machine_type in machine_types: (3)
 for worker in workers: (5)
 for workload in workloads: (4)
 for user in number_of_users: (4)
 time_stuff()

•  Total = 4 * 3 * 6 * 4 * 4 = 1152
•  Total completed so far: 837
•  Successful completion for: 655

•  Reasons for failure:
•  Turnaround time for a job capped at 1.5 hours
•  Transient capacity issues on the cloud (couldn’t get the machines on demand)
•  The occasional selenium hiccup

What it records
•  Time taken for each segment of the test

• Records atop logs at 10 second intervals
•  Provides snapshot of CPU, memory, process and network usage

5 GB of atop
logs and timing
logs (mostly
atop)

Results
Av

er
ag

e
tim

e
(s

ec
s)

No. of workers

Average	 of	 *me	 taken	 machine_type	
workers	 1.	 m1.medium	 2.	 m1.large	 3.	 m1.xlarge	

0	 1425.393948	 1569.968806	 1266.41437	
1	 1346.412998	 1176.365253	 1084.031046	
2	 1269.079958	 1124.207206	 993.8295797	
3	 1938.757942	 1380.971698	 937.1919329	
4	 1558.144051	 1133.047089	 819.9848138	
5	 1177.656928	 986.7495938	 722.8780805	

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5

m1.large

m1.medium

A list of configurations to use for a particular scenario (e.g. how many
workers for a 20 user rna-seq workshop?)

Results (contd…)
• One worker pays off the most irrespective of the instance

type or workload

Av
er

ag
e

tim
e

(s
ec

s)

0

500

1000

1500

2000

2500

0 1 2 3 4 5

deseq-m1.large

deseq-m1.xlarge

variant-m1.xlarge

rnaseq-m1.xlarge

No. of Workers

Results (contd…)
•  Transient vs Volumes

•  Volumes were slightly outperforming transient storage.
•  We asked the NeCTAR team why? Turned out that transient storage

was rate limited to 25MB/sec to prevent any one VM from hogging the
disk bandwidth.

Above effect not visible on zone NCI.

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5

transient-m1.large

transient-m1.xlarge

volume-m1.large

volume-m1.xlarge

Av
er

ag
e

tim
e

(s
ec

s)

No. of Workers

Results (contd…)
• Gluster vs Volumes

• Differences turned out to be marginal.
• Not congruent with our previous experiences
• Reasons unknown so far

Results (contd…)
•  Total CPUs in cluster appears to contribute most to overall performance.

•  E.g. Two large (4 core) instances roughly = Single xlarge (8 core) instance

•  Therefore – less likely to overprovision if you use many smaller instances
(with autoscaling), as opposed to a few larger instances

No. of Workers

Av
er

ag
e

tim
e

(s
ec

s)

Repository
https://bitbucket.org/gvl/gvl-stress-test

url: https://swift.rc.nectar.org.au:8888/v1/AUTH_377/gvl_performance_results
shortened url: http://bit.ly/gvl_performance_results

Work in progress

Raw Result Data:

Detailed Report:

What next?
• Amazon/EC2 vs NeCTAR/Openstack?
• Gluster vs NFS vs PVFS/OrangeFS vs …?
• No. of web runners?
• No. of Job Handlers?
• No. of Nginx workers?

• More in-depth analysis of the data we have right now.

