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Overview 
• GVL Quality Assurance 

•  Automated QA tests 

• GVL Scaling 
•  Many QA tests in parallel = Scalability test 



Quality Assurance 
Why? 

With each new GVL release: 
•  Do the tutorials run to completion? (Tedious and error prone to check 

manually) 
•  Need a quick way of knowing whether things are in reasonable shape 
•  Need an end-user perspective on how things work 

How? 

•  Using Selenium 
•  Run full workflows that exercise a complete set of tools 
•  Check whether tool output == expected output 
•  Also exercise typical use cases in UI 



Demo 
• Selenium in action 



Writing a simple test 

A library of test snippets available. Composed as desired for a more complex test. 
Similar to Galaxy’s Twill based tests of internal API 



Issues encountered 
• Some elements have no ids = brittle xpaths 



Performance Testing 
Why? 

•  How many workers do you need for an RNASeq wokshop with 20 
users? What size should the workers be? 

•  How does the GVL scale for different workloads? 
•  What combinations of storage, instance types, workers etc. are 

recommended? 
•  We had mostly anecdotal evidence – needed a more data-driven 

approach 

How? 

•  1 thread = 1 user = QA 
•  Many threads = Multiple Users = Performance 
•  Use Selenium Grid 



Selenium Grid 

Also tried PhantomJS+Ghostdriver as a lightweight Selenium backend – lots of potential – but 
didn’t work out 



What was done? 
• Desirable combinations tested. 
• All run on the NCI zone (identical hardware) 
• Each test had independent resources (e.g. brand new 

Galaxy/Cloudman instance launched, independent gluster 
servers, nfs servers used etc.) 

•  Transient cloud conditions not controlled for 



Combinations tested 
•  storage_type = { gluster, transient, volumes, nfs } 
• machine_type = {  m1.medium, m1.large, m1.xlarge } 
• workers = { 0 to 5 workers } 
• workloads = { rnaseq basic tutorial, deseq basic tutorial                 

      microbial assembly tutorial, variant 
                       detection basic tutorial } 

•  simultaneous users = { 1, 5, 10, 20 } 



Test loop 
for storage_type in storage_types: (4) 

 for machine_type in machine_types: (3) 
  for worker in workers: (5) 
   for workload in workloads: (4) 
    for user in number_of_users: (4) 
     time_stuff() 

•  Total = 4 * 3 * 6 * 4 * 4 = 1152 
•  Total completed so far: 837 
•  Successful completion for: 655 

•  Reasons for failure: 
•  Turnaround time for a job capped at 1.5 hours 
•  Transient capacity issues on the cloud (couldn’t get the machines on demand) 
•  The occasional selenium hiccup 



What it records 
•  Time taken for each segment of the test 

• Records atop logs at 10 second intervals 
•  Provides snapshot of CPU, memory, process and network usage 

5 GB of atop 
logs and timing 
logs (mostly 
atop) 



Results 
Av

er
ag

e 
tim

e 
(s

ec
s)

 

No. of workers 

Average	  of	  *me	  taken	   machine_type	  
workers	   1.	  m1.medium	   2.	  m1.large	   3.	  m1.xlarge	  

0	   1425.393948	   1569.968806	   1266.41437	  
1	   1346.412998	   1176.365253	   1084.031046	  
2	   1269.079958	   1124.207206	   993.8295797	  
3	   1938.757942	   1380.971698	   937.1919329	  
4	   1558.144051	   1133.047089	   819.9848138	  
5	   1177.656928	   986.7495938	   722.8780805	  
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A list of configurations to use for a particular scenario (e.g. how many 
workers for a 20 user rna-seq workshop?) 



Results (contd…) 
• One worker pays off the most irrespective of the instance 

type or workload 
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Results (contd…) 
•  Transient vs Volumes 

•  Volumes were slightly outperforming transient storage. 
•  We asked the NeCTAR team why? Turned out that transient storage 

was rate limited to 25MB/sec to prevent any one VM from hogging the 
disk bandwidth. 

Above effect not visible on zone NCI. 
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Results (contd…) 
• Gluster vs Volumes 

• Differences turned out to be marginal. 
• Not congruent with our previous experiences 
• Reasons unknown so far 



Results (contd…) 
•  Total CPUs in cluster appears to contribute most to overall performance. 

•  E.g. Two large (4 core) instances roughly = Single xlarge (8 core) instance 

•  Therefore – less likely to overprovision if you use many smaller instances 
(with autoscaling), as opposed to a few larger instances 
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Repository 
https://bitbucket.org/gvl/gvl-stress-test 

url: https://swift.rc.nectar.org.au:8888/v1/AUTH_377/gvl_performance_results 
shortened url: http://bit.ly/gvl_performance_results 

Work in progress 

Raw Result Data: 

Detailed Report: 



What next? 
• Amazon/EC2 vs NeCTAR/Openstack? 
• Gluster vs NFS vs PVFS/OrangeFS vs …? 
• No. of web runners? 
• No. of Job Handlers? 
• No. of Nginx workers? 

• More in-depth analysis of the data we have right now. 


