Galaxy Community Conference
Penguin – EMC Isilon Life Science Solution Update
Overview

- About Penguin Computing & Isilon
- Penguin – Isilon Life Science Solution
- How To Engage
Penguin Computing Quick Facts

- **1997**
 - Founded and focused on custom-built Linux systems
 - Based in Fremont, CA with offices in San Francisco, Atlanta, Washington DC, Boston
- **2004**
 - Acquired Scyld Software to improve HPC ease of use
- **2010**
 - Launched Penguin-On-Demand (POD) as an HPC as a service cloud offering
- **2011**
 - Offer solutions and services for High Performance Computing, Efficient Data Center, and Cloud Services
 - Provide 24x7 support to customers in over 40 countries
 - 2500+ customers to date
 - Private equity backed
Penguin Experts In Sci. Computing
From Personal Workstations To Super Computers

- 4 processors
- 64 cores
- 512 GB RAM
- 31 TB storage
- NVIDIA Tesla GPGPU or Intel Phi
- Delivered worldwide with Next Business Day support

- 130 TFLOPS
- 13,000 AMD compute cores
- 400TB of High-speed scratch space
- 7500 meters of cable
- Liquid Cooled
- Half a Mega-Watt of Power

Ranked in the Top 50 Largest Supercomputer in the World

© Copyright 2013 EMC Corporation. All rights reserved.
Penguin Experts In Sci. Computing
To a Complete Suite of Targeted Cloud Services

Customer Examples
Cummins Engine
Suzuki Motors(NEC)
University of Memphis
Ion Torrent (Life Technologies)
Cross Commerce Media
Northrop Grumman
Scyld Cluster and Cloud Software Suite

Insight
- End-user focused physical or virtual cluster management GUI
- 1:1 match with Scyld CW functionality
- Hardware and workflow monitoring
- Integrated log viewer for maintenance and diagnostics
- Dynamically present cluster and job status

Cloud Manager
- HPC focused private and public cloud management
- User and group management
- Integrated resource management and billing
- Ties into existing CRM and financial systems
- Based on Web services
- Built in authentication services

PODTools
- Convenient and secure method to submit jobs and data to POD
- Automatically returns results when complete
- Customize workflow through a scriptable interface
- Generate ad hoc reports to see core hour and GB usage

ClusterWare
- Cluster management interface
- Minimizes effort required to set-up, update and maintain a cluster
- Guarantees consistency across all servers
- Provides complete, tested and supported cluster software stack
Penguin On Demand (POD)

• Non-virtualized, 'bare-metal' execution for optimal performance
• Low-latency QDR Infiniband and 10GbE fabric on all nodes for great application scalability
• Fast CPUs, GPUs, large memory, local scratch space, fast global storage space
• Over 60 HPC applications installed
• Flexible virtual server environment for job submission and hosted web applications
• Support from experienced HPC system administrators
• Pay-as-you-go only for core hours really used by your jobs - billing at 3-second intervals
EMC Isilon Company Overview
Setting the Standard for Scale-out NAS

- Broad adoption across many markets
 - High Performance Computing (HPC): Life Sciences, Oil & Gas, Electronic Design Automation, Media & Entertainment, Financial Services
 - Enterprise IT: Archive, Home Directories, File Shares, Virtualization, Business Analytics

- Over 4,000+ global customers
 - 2012 60% Y/Y growth rate
 - EMC #1 NAS market*

- Isilon OneFS: Seventh generation, industry-proven, innovative scale-out operating environment

EMC Isilon - Experts in Life Science Storage

- Proven
 - At 250+ life sciences organizations backed by knowledgeable SMEs

- Simple
 - One FTE can administer up to 20 PB using automation, policies and out-of-the-box security, data protection features

- Versatile:
 - Respond quickly to changes in workflow performance and capacity requirements

- Scalable:
 - Meet performance and capacity requirements across of the spectrum of scientific computing workloads
Isilon Scale-Out NAS Architecture

Servers
- Windows
- Linux
- macOS

Client/Application Layer

Ethernet Layer

OneFS Operating Environment

Hadoop

NFS
CIFS
HTTP
FTP
HDFS for Hadoop

Single FS/Volume

Intra-cluster Communication Layer
Isilon Scale-Out NAS Architecture

- Servers
 - Windows
 - Linux
 - Apple

- Client/Application Layer

- Ethernet Layer
 - NFS
 - CIFS
 - HTTP
 - FTP
 - HDFS for Hadoop

- OneFS Operating Environment
 - SmartConnect
 - SmartPools
 - SmartFail
 - AutoBalance
 - SmartQoutas
 - GNA

- Intra-cluster Communication Layer
Storage Tiers in HPC

- **Tier 1**
 - storage for immediate use by active computational processes
- **Tier 2**
 - storage for staging, result collection, raw instrumentation data
- **Tier 3**
 - storage for near line archive, inactive (lukewarm) data with potential
- **Tier 4**
 - permanent archive, cold data
- Isilon fits into Tier 2 and Tier 3 quite well
Isilon Fit Along the Spectrum (Tier 1)

Embarrassingly Parallel
- I/O operations weighted heavily toward sequential reads
- Less data written back and written back sequentially
- Read a number of data files concurrently
- Isilon excels

Fine Grained Parallelism
- Random I/O on a single (or small number) file;
- Block operations within a small number of files.
- Write their output to a single file or transfer data between processes using the I/O subsystem.
- Parallel file system perform much better here
- Consider alternatives to Isilon
Isilon Fit In Tier 2

Pros
- Multi-protocol supports a wide variety of users/instruments and high performance networks
- Massive scalability with a single namespace
- High speed (10GbE) networking interfaces

Cons
- No IB on the front end
- No RDMA for NFS
- Data movement between HPC storage tiers is cumbersome
Best Practices I/O – Classical HPC

- Tiered access to storage resources
 - Separate HPC workloads from staging and review
 - SmartPools on Isilon can do this within a cluster
 - IRODs and other rule oriented data movers can do this across clusters of storage resources

- NFSv4
 - Greatly enhanced locking functionality
 - No more stale locks
 - Byte-range locking or delegations
 - Compound operations
Best Practices I/O – Traditional HPC

• Load balancing
 – NAS is the easier way to go
 ▪ Better integrated load balancing mechanisms
 ▪ Now easily accessible over IB
 – Isilon SmartConnect balances connections over the cluster and is SmartPool “aware”
 – NAS provides better failover support...no complicated FC mappings, zoning, etc. just IP based redirection
Hybrid Cloud

• Advantages of cloud(s) (private or public)
 – Allows the creation of ad-hoc compute clusters
 – Provide dynamic expansion of existing compute or storage (burst availability)

• Challenges
 – Data locality to compute resources
 – Data transfer to expanded resources
 – Data management and flow
Hybrid Cloud – Best Practices

• Use Common S3/Swift Protocols
 − Common semantics for accessing data when dealing with hybrid resources
 − Isilon now supports Openstack Swift interface with both named access and container/object access
 − Openstack Cinder support coming for virtual block device allocation
 − Some instrumentation vendors (e.g. Illumina) support data output into Swift/S3 containers
Hybrid Cloud – Best Practices

• Provide common application frameworks
 – Gives developers a way to sandbox their app development and deploy to production without changing code
 – Many application frameworks have built in resource schedulers/workflow managers or integrate with them directly
 ▪ Penguin On Demand & Scyld Manager
Grid Best Practices

• Storage challenges are equivalent to classical HPC with the extra twist of widely distributed resources

• Use IRODS
 – Being better instrumented to work directly with Isilon
 – Several meta-schedulers (like MapSeq/UNC) are directly integrated

• Newer meta-schedulers made to make better use of grid resources and provide dynamic reconfig
 – Omero at CRS4 can reconfigure resources for Hadoop and regular resources
 – Apache Zookeeper
 – UNC MapSeq
Spectrum of Resources
Where Do I Fit In?

- Am small academic-private institute that does not have funding to host dedicated research IT
- Do not have staff skilled in setting up bioinformatics solutions
- Want to focus on my science, not administering computers and applications
- Have computing requirements that exceed my local workstation, either because I temporarily need hundreds of computing cores or a large RAM (> 128 Gigs)
- Need to maintain a long-term archive of my experimental data and results for collaboration
Penguin & Isilon At The Center Of Life Sciences Workflows
Penguin – Isilon Life Sciences Solution

- Get all the benefits of a scientific computing environment in a converged infrastructure
- Maximize focus on science while minimizing system administration
- Enabled to support ‘bursty’ workflows through Scyld & POD
- Backed by HPC experts & enterprise global support
- A pre-fab “bespoke” solution built to meet and evolve with your local requirements
Solution Spec’s

Isilon

- 4 X200 (2U) nodes, each with 48GB of RAM, 2x10GbE ports
- 2 QLogic 1U Infiniband switches for Isilon backend
- 2 1U 10GbE switches

Penguin

- 2 1U 10GbE Artica Switches
- 13 1U compute nodes
 - Relion 1800i, dual Intel Xeon E5-2603v2, 64GB of RAM and 1TB DAS
 - 1U compute nodes for as Galaxy host/head node/torque mom
 - 12 U for compute jobs.
How to Engage
Contact

• Penguin Computing
 – David Ingersoll, VP Business Development
 – dingersoll@penguincomputing.com

• EMC Isilon
 – Sasha.paegle@isilon.com
Arctica 4804x: 48x SFP+ switch with 4x QSFP Uplinks

<table>
<thead>
<tr>
<th>Brand name</th>
<th>Penguin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model name</td>
<td>Arctica 4804x</td>
</tr>
<tr>
<td>Port Configuration</td>
<td>48x 10G(SFP+) 4x 40G (QSFP)</td>
</tr>
<tr>
<td>Switching Capacity</td>
<td>1.28Tbps</td>
</tr>
<tr>
<td>Maximum forwarding rate</td>
<td>960mpps</td>
</tr>
<tr>
<td>Dimension</td>
<td>1RU, 15.5” deep</td>
</tr>
<tr>
<td>Airflow</td>
<td>F2B or B2F</td>
</tr>
<tr>
<td>Redundant power?</td>
<td>Yes</td>
</tr>
<tr>
<td>AC/DC Option</td>
<td>AC or DC</td>
</tr>
<tr>
<td>N+1 hot swap fans</td>
<td>3+1 fixed</td>
</tr>
<tr>
<td>In/Out band mgmt?</td>
<td>Yes</td>
</tr>
<tr>
<td>MAC</td>
<td>128K</td>
</tr>
<tr>
<td>Packet buffer</td>
<td>9MB</td>
</tr>
</tbody>
</table>
IB to IP Switching

• Many HPC customers running dedicated IB networks
• Isilon evaluated and tested IB to IP gateway products from Mellanox
 • These connect the 10GbE frontend and to the Infiniband network.
 • The switch supports proxy-arp between the two networks
 • IPoIB drivers and network setup required on client hosts. No change on Isilon
• Using NFSv3 and 4 with TCP on ipoib we can consistently achieve >95% of the performance of 10GbE
Lustre HSM on Isilon

- Lustre very common as Tier 1 storage
- Isilon working with multiple Lustre HSM solutions
 - Isilon clusters become an archive target for the HSM
 - Intel Lustre allows a degree of mirroring to take place (archive+)
- PLFS based HSM target also available