
Building More Powerful
Galaxy Workflows with

Dataset Collections
Progress and Plans

John Chilton and the Galaxy Team
http://bit.ly/gcc2014workflows

John @ GCC 2012, 2013 - Workflows... not good enough!

More Powerful Workflows

Arbitrary # of Inputs (...
paired).

Run applications in parallel (one per input).

Merged output for
subsequent processing.

API First Development

Initial work focused on building an API for creating and
using dataset collections.

Upshot - API is richer than UI currently (especially in
stable).

bioblend contains high-level functionality for creating and
“viewing” collections in different ways.

Collection Types

Currently two supported type pseudo-plugins - “list” and
“paired”.

● Lists can contain arbitrary number of named
elements

● Pairs contain a “forward” and “reverse” element.

Types can be combined to build nested types - for instance
“list:paired” describes a list of paired datasets.

Upload Some Data…

Select the Pairs

Create a Collection...

Collection Mapping (1 / 3)

Tool consumes a
FASTQ file.

-List of Paired Datasets

-Individual FASTQ datasets.

Collection Mapping (2 / 3)

Collection map icon replaces
input options with valid
collections.

Runs tool over every dataset in
list of pairs and produces
groomed list of pairs.

Collection Mapping (3 / 3)

Like hiding workflow datasets, they are visible initially and
hidden after completion (only collection remains visible).

Collection always green regardless of contents (stateless).

Need to do better on both points… not scalable enough.

Sample Tracking: Identifiers + Indices
Paired mt Datasets
list:paired collection
 Element - 0:M236C4 (paired collection)
 Element - 0:forward
 hda - M236C4-ch_1.fq
 Element - 1:reverse
 hda - M236C4-ch_2.fq
 Element - 1:M486C2 (paired collection)
 Element - 0:forward (hda)
 hda - M486C2-ch_1.fq
 Element - 1:reverse (hda)
 hda - M486C2-ch_2.fq
 ...

FASTQ Groomer across collection 8
list:paired collection
 Element - 0:M236C4 (paired collection)
 Element - 0:forward
 hda - FASTQ Groomer on data 1
 Element - 1:reverse
 hda - FASTQ Groomer on data 2
 Element - 1:M486C2 (paired collection)
 Element - 0:forward (hda)
 hda - FASTQ Groomer on data 3
 Element - 1:reverse (hda)
 hda - FASTQ Groomer on data 4
 ...

Mapping over collections -
dataset naming is normal,
but new collection created
with identical tree structure
and element identifiers
preserved.

Subcollection Mapping
Bowtie2
wrapper
modified with
option to take
in a paired
dataset instead
of two separate
datasets.

Tool Parameters - Tool XML

<param name=”collect_param1” type=”data_collection”
 format=”bam” collection_type=”paired” />

Optional - filter
collections by

contained formats.

Optional - filter
collections by

collection_type.

Tool Parameters - Cheetah-isms

Common paired data idiom:
bowtie $collect_param.forward $collect_param.reverse

Common list data idiom:
#for $f in $collect_param# $f #end for#

-or-

 #for $name in $collect_param.keys()# $f[$name] #end for#

Nested data:
#for $f in $collect_param# $f.is_collection …

Tool Parameters - Testing
 <test>

 <param name="collect_param">

 <collection type="paired">

 <element name="forward" value="simple_line.txt" />

 <element name="reverse" value="simple_line_alternative.txt" />

 </collection>

 </param>

 ...

Subcollection Mapping

Subcollection Mapping (Identifiers)
Paired mt Datasets
list:paired collection

 Element - 0:M236C4 (paired collection)

 Element - 0:forward

 hda - M236C4-ch_1.fq

 Element - 1:reverse

 hda - M236C4-ch_2.fq

 Element - 1:M486C2 (paired collection)

 Element - 0:forward (hda)

 hda - M486C2-ch_1.fq

 Element - 1:reverse (hda)

 hda - M486C2-ch_2.fq

 ...

Bowtie 2 across collection 13
list collection

 Element - 0:M236C4

 hda - Bowtie 2 on data 9 and data 10
 Element - 1:M486C2

 hda - Bowtie 2 on data 11 and data 12
 …

Reducing Collections

Modified “Merge BAM
Files” tool to use
multiple input data
parameter instead of
two input parameters
and a repeat block.

Reducing Collections

Can dynamically
substitute collection for
the multiple selection of
datasets.

Handful of Reduction Tools...

A handful of reduction tools need to be updated (so will
tools consuming pairs). Using multiple input data
parameters instead of repeat parameters will still allow
these tools to work with uncollected dataset.

repeat blocks - while cumbersome - allow duplicated
entries & control of order. Multiple input data parameters
should be enhanced to have same control.

Plan: Multiple-Data Improvements

Enhance multiple input data
parameters to allow control
of order and repeated
entries.

All the ease of multiple data
inputs with actually greater
versatility than placing
simple data inputs into
repeat blocks. An advanced “add to selection” modal would

provide interesting room to grow - options for
importing library datasets, digging into
collections, etc....

Mock Up

Extract a Workflow

More Powerful Workflows

Arbitrary # of Inputs (...
paired).

Run applications in parallel (one per input).

Merged output for
subsequent processing.

More workflows...

Core phylogenomics SNP pipeline by Aaron Petkau, Gary
Van Domselaar, Philip Mabon, and Lee Katz.
Worked 208 single end reads producing 1469 datasets
Galaxy took 10 minutes to schedule workflow.

https://github.com/apetkau/core-phylogenomics

Plans - Improvements to Builder

Iteration 2 - https://trello.com/c/8hEO00xj
Regex filters, more assistance, allow
reordering

Iteration 3 - https://trello.com/c/lLk9ICvM
Batch renaming, dataset info on click, hide
original datasets.

https://trello.com/c/8hEO00xj
https://trello.com/c/lLk9ICvM

Plans - More Options in History Panel

https://trello.com/c/hnmWWKlB

Currently can hide, delete, and
see name.

Cannot rename, rerun, see type,
see contents, see/add annotations,
see/add tags, download, etc...

https://trello.com/c/hnmWWKlB
https://trello.com/c/hnmWWKlB

Plans - UI for Uploading Collections

https://trello.com/c/ZAXwWOZ2

Incorporate collection builder when uploading
files (or vise versa).

https://trello.com/c/ZAXwWOZ2
https://trello.com/c/ZAXwWOZ2

Plans - UI for Viewing Collections

https://trello.com/c/PVdbbpQS

https://trello.com/c/PVdbbpQS
https://trello.com/c/PVdbbpQS

Plans - Store Collections in Data Libraries

https://trello.com/c/3axmjaxE

https://trello.com/c/3axmjaxE
https://trello.com/c/3axmjaxE

Plans - Improved Reductions

https://trello.com/c/lp5YmA1O

Improvements to multiple data parameters
described earlier and/or ability to reduce
across repeat statements.

https://trello.com/c/lp5YmA1O
https://trello.com/c/lp5YmA1O

Plans - Filtering Collections

https://trello.com/c/ryKJrsYc
Main Goal: Filter out the failed datasets and keep going.

Would like more general filters - filter on metadata (file
size, number of sequences, etc…)

Needs to be trackable so can extract and execute in
workflows. May require delayed workflow evaluation.

https://trello.com/c/ryKJrsYc
https://trello.com/c/ryKJrsYc

Plans - Output Collections

https://trello.com/c/KXjp6lIn
Use Cases:
● 1→N (metagenomics, splitting)
● N→N (normalization across files)
Progress on tool running was made at hackathon (thanks JJ
and Carrie) - workflows will challenging (ever more
bookkeeping for editor).

https://trello.com/c/KXjp6lIn
https://trello.com/c/KXjp6lIn

Plans - Rerun Tools / Resuming Workflows

https://trello.com/c/lxVJy7fs

https://trello.com/c/lxVJy7fs
https://trello.com/c/lxVJy7fs

Plans - Update and Add New Tools

https://trello.com/c/lxVJy7fs
● Paired-end mappers (bowtie, etc…)
● Concatenate Datasets
● Merge Bam
● Many sorts of interesting tabular operations to merge

datasets (also using element identifiers).
● etc...

https://trello.com/c/lxVJy7fs
https://trello.com/c/lxVJy7fs

Toward 10,000 samples (beyond collections)

● Optimize database interactions, tool execution.
● Move workflow scheduling into own process, optimize.
● Differentiate between cluster failures and tool failures.

○ Retry later on cluster failures.
○ Retry on different cluster or with different resource params on

failures.
● Optimize disk usage - streaming
● More diverse and bigger compute and storage

○ Separate metadata calculation out into its own “job”
○ XSEDE
○ More portable dependency management (docker, nix, tool shed

installs without galaxy)

Docker… Docker… Docker...

https://github.com/jmchilton/gcc2014_demo

Thanks!The Galaxy Team The Galaxy-P grant, team,
and the Minnesota
Supercomputing Institute
for funding development of
multiple file datasets (a
precursor) - with special
thanks to Tim Griffin, Pratik
Jagtap, Benjamin Lynch,
and Anne-Françoise
Lamblin.

The Galaxy Community for
building awesome stuff
with Galaxy and pushing
the platform forward -
especially Philip Mabon
and Bjoern Gruening.

With special thanks to Carl Eberhard - for
building UI powering this work, Jeremy and
Dannon for scoping out initial plans, and Nick,
James, Dan, and Anton for ongoing feedback.

Models

Lots of changes but the yellow
boxes are the core additions.

Extra Content

Plans - Other
● https://trello.com/c/WodW2sLb
● Subcollection mapping over multiple data parameters.
● Fix history import/export for data collections.
● Implicit conversion
● Allow batch input of collections to workflows
● HIDs of copied collections are wrong - either always

copy HDAs also or reconsider naming in context of
collections.

https://trello.com/c/WodW2sLb
https://trello.com/c/WodW2sLb

TODO:
● Screenshots of building up workflow from scratch?

Extra Slides (post presentation)…
● Comparison with multiple file datasets.

REDO Initial Screenshots with Correct History Name on Bigger Monitor.

Building Collections...
>>> from bioblend import galaxy
>>> gi = galaxy.GalaxyInstance(url="localhost:8080",
 key="db53bb4500dfaeda25ceb378069b722b")
>>> hist = gi.histories.get_histories(name="Map/Reduce Test")[0]
>>> gi.histories.show_history(hist["id"], contents=True, deleted=False)
>>> pair1_id = [d for d in gi.histories.show_history(hist["id"], contents=True)
 if d["hid"] == 5][0]["id"]
>>> pair2_id = [d for d in gi.histories.show_history(hist["id"], contents=True)
 if d["hid"] == 6][0]["id"]
>>> gi.histories.update_dataset_collection(hist["id"], pair1_id, name="M236C4")
>>> gi.histories.update_dataset_collection(hist["id"], pair2_id, name="M486C2")

bioblend contains support for
creating, reading, updating (name,
annotations, etc…), and deleting
history dataset collections.

https://github.
com/afgane/bioblend/commit/f8d40b687be4c699d608e9
30c59726793922fa0a

https://github.com/afgane/bioblend/commit/f8d40b687be4c699d608e930c59726793922fa0a
https://github.com/afgane/bioblend/commit/f8d40b687be4c699d608e930c59726793922fa0a
https://github.com/afgane/bioblend/commit/f8d40b687be4c699d608e930c59726793922fa0a
https://github.com/afgane/bioblend/commit/f8d40b687be4c699d608e930c59726793922fa0a

Collection Mapping (1 / 3)

Tool consumes a
FASTQ file.

-List of Paired Datasets
-Paired Datasets
-Individual FASTQ datasets.

Collection Mapping (3 / 3)

Like hiding datasets in workflow execution, datasets
are visible running or queued and they are hidden
after (and only collection is visible).

Collection is always green regardless of contents - is
currently stateless.

Need to do a better job on both points - this is not
too scalable - but it was an easy quick win.

Plans - UI for Creating Collections
https://trello.com/c/CIIdaxl2 Mockup @ mybalsamiq

https://trello.com/c/CIIdaxl2
https://galaxy.mybalsamiq.com/projects/mockups/Create%20a%20collection%20of%20paired%20datasets%20-%20v3
https://trello.com/c/CIIdaxl2

Why not repeat replacements?

In its most simple form - allowing replacement
of one repeat block with a collection - this
feature would be gross to implement - it would
add a lot of complexity to already complex parts
of Galaxy.

 … and it would not work with any
tools.

Concatenate (Easiest Reduction)
Not just a repeat, would
need to be able to
dynamically replace
input + repeat to work
with this. That will be
ugly and will have
implications all over.

Merging Bams

Second most common
reduction - has two inputs
and a repeat. So we need
to be able to dynamically
replace any number inputs
and a repeat. Hmm….

Merging BedGraph

Found another reduction tool
on main. Multiple inputs, multiple
extra options. How could this
reasonably allow collection
replacement at the infrastructure
level.

