

STORY IN 2 PARTS:

□ Rationale□ Proposal

~7 x 10⁹ humans

range{1, 240} x 10¹² cells/human*

range{0.07, 16} x 10²³ human cells

0.7 to 160 x 10^{23} human microbes on earth?

Avogadro Number: 6.023 x 10²³

*15-60 picograms/cell. Source: Phillips KG, et al, "Optical quantification of cellular mass, volume, and density of circulating tumor cells identified in an ovarian cancer patient" Frontiers in Oncology: Cancer Molecular Targets and Therapeutics, July 2012, Vol 2:72

p-values do not work*

In a Population of 7 x 10°, with Confidence Interval of 0.025, Confidence Level of 95% and 100 degrees (genes) of freedom, Sample Size = ~15 million

*Sources: du-Prel J-B, et al "Confidence Interval or P-Value?", Dtsch Arztebl Int 2009; 106(19): 335-339

*Ziliak ST and McCloskey DN, "The Cult of Statistical Significance", Section on Statistical Education, JSM 2009

Intensive Workflows ata

Data Center Tradeoffs

High Availability, Archival

Higher Priority

CAPEX vs. OPEX

Temp-Space: Local vs. Scale-Out (define "writes", understand process)

CPU + Acceleration on same node

CPU speed control, High-density disk nodes

Lower Priority

Derived from: Stuart Feldman, Google

ISD Life Sciences

EMC²

OPEX

Genomics

Derived from: Sboner A, et al., "The real cost of sequencing: higher than you think!", Genome Biology 2011, 12:125

Storage: Choose Two

Cost

Performance

Speed

Validation Initiative Proposal

Data Management

The Galaxy philosophy:

- Data is never overwritten
- Data is never deleted

MOTIVATION

>Private & Community Cloud? 79% From: Security guidance for critical areas of focus in Cloud Computing v3.0: http://www.cloudsecuritvalliance.org/quidance/csaquide.v30.pdf Infrastructure Infrastructure Infrastructure Accessible and Managed By1 Located³ Consumed Bv4 Owned Bv²

Public Third Party Provider Third Party Provider Off-Premise Untrusted Organization Organization On-Premise Private/ Trusted Community Third Party Provider Off-Premise Third Party Provider Both Organization & Both Organization & Trusted & Both On-Premise & Hybrid Third Party Provider Third Party Provider Off-Premise Untrusted

of respondents are concerned about **Cloud Security***

*Feb 2012

InformationWeek :: reports

hacks per day in 2012** versus 10 in 2011

** Ponemon Institute Oct 2012

genome Y-STR **Surnames from ancestry data**

Science, Jan 2013: 339:6117 pp. 321-324

Common Variants: Trace DNA

Craig DW, et al, (2008), PLoS Genet 4(8)

21M

data breaches in 18-month **period** 2010-11 (\$2.25M/breach)

• US Govt. Office of Civil Rights, HHS £1.79B fines in UK for NHS 2012 breaches position points (GPS) determine identity

• • Scientific Reports, 3, Mar 2013

PGP Encrypted De-ID reverse engineered +

+ Data Privacy Lab, CMU, Apr 2013

Life Sciences

S
0
G
0
U

Access Controls

Functions

Regulations

• • • • • • • • • • • • • • • • • • •		45CFR 164.312(a) 21CFR 11.10(b)(d)	System Access: Unique Name/Id, Role-based perms, Single Sign-On SAML		FDA, HIPAA AES
Audit Controls		220. K 22120(b)(u)			SAML WS-Trust
Regulations	Functions	Metho	Methods Compli		ni S. from various

Regulations	Functions	Methods	Complied by Joshi S. from various
45CFR 164.312(d) IETF RFC 4120	System Entry: Enterprise User Auth. (EUA)	FDA, HIPAA ATNA	CFR, FDA, HIPAA, IETTF, IHE, ASTM, FIPS and CAP guidelines
IHE-ITI-TF MOI 34960 34968	Cross Enterprise User Auth. (XUA)	CLIA-CAP	De-ID, Re-ID

MOL.34960,34968, Logging Regulations Functions Methods

45CFR 164.312(d) PHI: Code for de-ID,

IETF RFC 4120

THE-ITI-TF

Pedigree for Genomics

Pseudo-randomization

Paga Bilgegilley		1WE-111-1L	Pedigree for G	enomics	Pseudo-	randomizati	IOI
Regulations	Functions	Methods			HL7v3 F	Pedigree	
45CFR 164.312(c)	Data @rest:	HIPAA , SHA	2.				
FIPS PUB 180-2 SHA-224	Encryption,	CLIA-CAP,	´ _	,		_	

ASTM Std E1762-95 Key Management ASTM-Auth CLIA-CAP, ASTM-Auth Regulations Functions Methods

Clinical Reports

MOL.34914, 34929 CLIA-CAP **MOL.34944, 34952**

MOL.34954

45CFR 164.312(d) FIPS 180-2, 197 IETF RFC 2246, 3546, 2630, 3852 MOL.34972

<u>Security</u>: HTTPS (web), Crypto Message Syntax, TLS Compression

FDA, HIPAA SHA2 AES TLS CLIA-CAP

 EMC^{2}

Methods

ISD Life Sciences

VALIDATION PROCESS

Story in 4 steps:

- □ Clinical Use Survey
- **□** Architecture Review
- **□ Quality Systems Review**
- □ Validation

STEP 0: Clinical Use Survey TBD

STEP 1: Architecture Review

Architecture Review

- Network Security
- OS Hardening
- Deny all first (user/install),
 - allow and use only when needed
- ☐ Applications config. (Galaxy, PostgreSQL, Apache, ...)
- ☐ Physical server access (BIOS, GRUB, SSH, ...)
- ☐ Internet access protocols (SSH, Sftp, API...)

STEP 2: Quality System Review

Quality System Review (QSR)

- Logging and Server Management
- □ Risk Management Business, Functional and Application
- ☐ Human factors Training, SOPs, Change Control
- Software Development Life Cycle
- **☐** IT Processes

"The Cloud is your mess managed by someone else"*

*Source: Halamka J., "Life as a Healthcare CIO" blog

 EMC^{2}

STEP 3: Implement

S. Joshi, Revised June 2013

DRAFT QA Document

ISD Life Sciences

EMC²

STEP 4: Validate

HANK YOU!

The Quantified Patient

Source: EMC Healthcare

ISD Life Sciences

EMC²