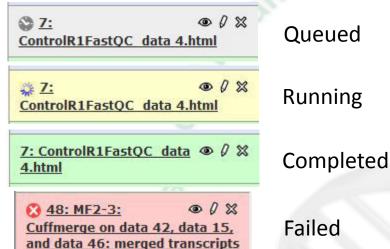

WS9: RNA-Seq Analysis with Galaxy (non-model organism)

David Crossman, Ph.D.

UAB Heflin Center for Genomic Science


GCC2012 Wednesday, July 25, 2012

Galaxy Splash Page

Random Galaxy icons/colors

Colors Download/Save

Icons

Display data in browser

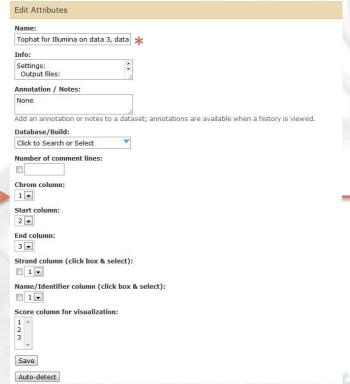
Edit attributes 💥

Delete

Edit dataset annotation

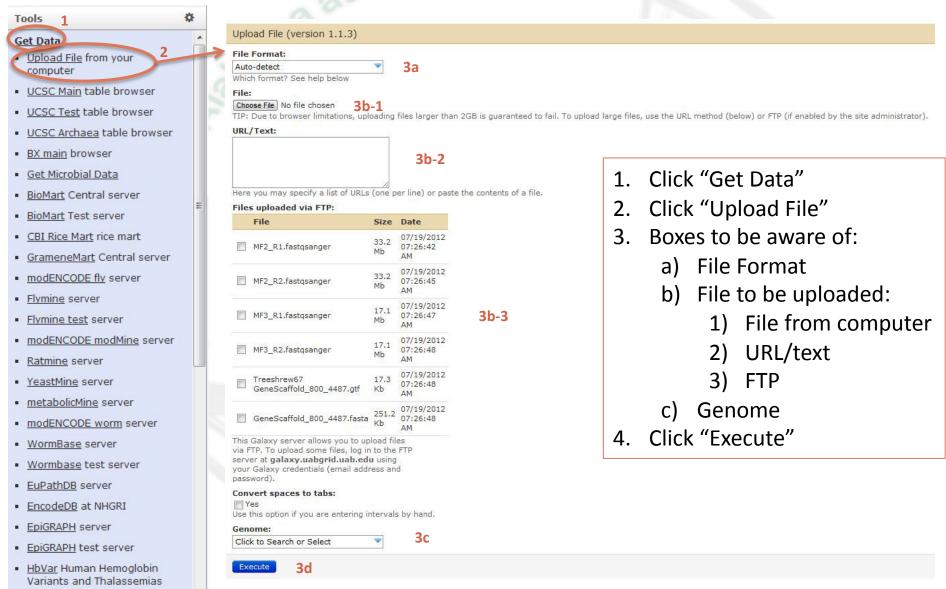
View details

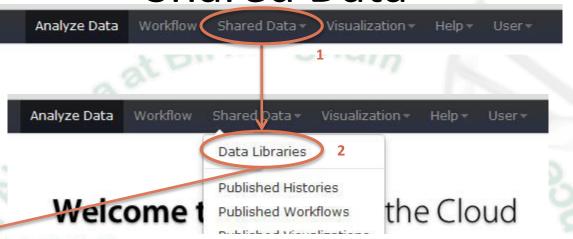
Run this job again



View in Trackster

Edit dataset tags

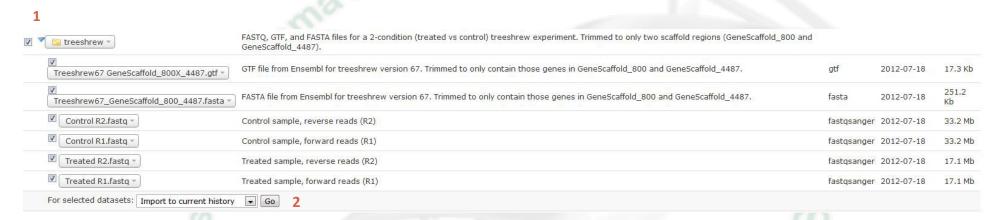

Edit files in History


11: Control Tophat for ● Ø 🛭 Illumina on data 3, data 4, and data 2: insertions

11: Tophat for Illumina ● Ø 🛭 on data 3, data 4, and data 2: insertions

Upload/Import Data

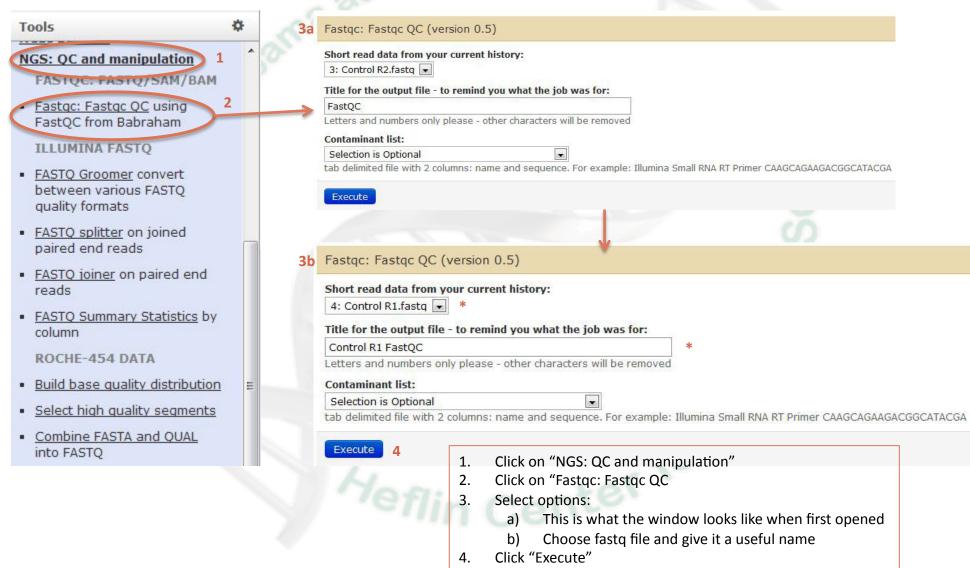
Shared Data



Data Library "WS9: RNA-Seq Analysis with Galaxy"

3

lame		Message			Data type	Date uploaded	File si
mouse 🔻				trol) mouse experiment. Trimmed to just the genes Plekhh2-PigF [chr17:8491123487424741]. Iniversity of Alabama at Birmingham (http://www.microbio.uab.edu/faculty/keeling/index.html)			
Galaxy37-[mm9_RefGene_patched:	3.gtf].gtf =	This dataset is uploading			None	2012-07-18	0 byt
drugged_mm9_chr17_Plekhl PigF_reverse.fastq	h2- 🔻	Drugged sample, reverse reads	1.	Click on "Shared Data" (located on top toolbar)	fastqsanger	2012-07-12	1.4 N
drugged_mm9_chr17_Plekhl PigF_forward.fastq	h2- *	Drugged sample, forward reads	2.	Drop down box appears; click	fastqsanger	2012-07-12	1.4 N
control_mm9_chr17_Plekhh PigF_forward.fastq	2-	Control sample, forward reads		on "Data Libraries"	fastqsanger	2012-07-12	1.5
control_mm9_chr17_Plekhh PigF_reverse.fastq	2-	Control sample, reverse reads	3.	Will see this Data Library. Click		2012-07-12	1.5
treeshrew 🔻		FASTQ, GTF, and FASTA files for a 2-co GeneScaffold_4487).	ndition (treate	on it to expand (as shown)			
Treeshrew67 GeneScaffold_800X_4	4487.gtf =	GTF file from Ensembl for treeshrew v	ersion 67. Trimi	ned to only contain those genes in GeneScaffold_800 and GeneScaffold_4487.	gtf	2012-07-18	17.3
Treeshrew67_GeneScaffold_800_4	487.fasta 🔻	FASTA file from Ensembl for treeshrew	version 67. Tri	mmed to only contain those genes in GeneScaffold_800 and GeneScaffold_4487.	fasta	2012-07-18	251 Kb
Control R2.fastq 🔻	A.	Control sample, reverse reads (R2)			fastqsanger	2012-07-18	33.
Control R1.fastq 🔻		Control sample, forward reads (R1)			fastqsanger	2012-07-18	33.
☐ Treated R2.fastq ▼	8	Treated sample, reverse reads (R2)			fastqsanger	2012-07-18	17.
Treated R1.fastq =	10	Treated sample, forward reads (R1)			fastasanger	2012-07-18	17.

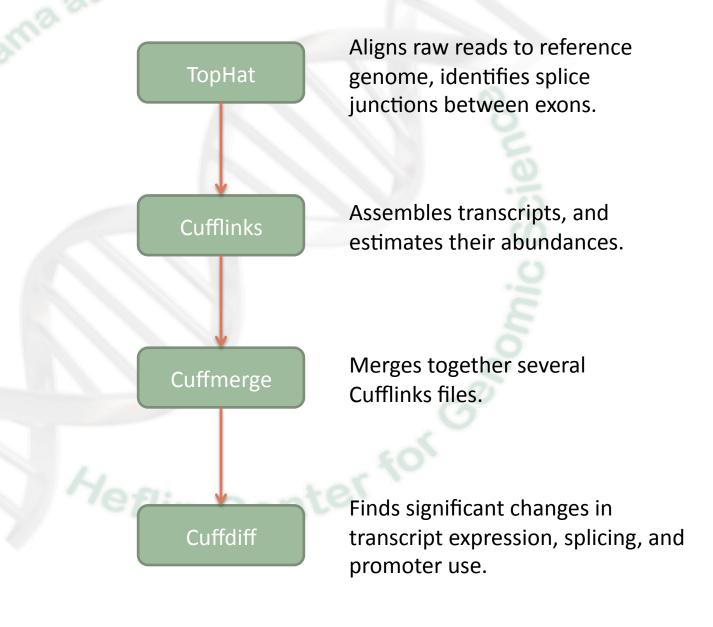

Import Shared Data to Current History

- 1. Check boxes of files you want to import
- 2. Choose "Import to current history" and then click "Go"
- 3. Will see the files in the right-hand pane of the Galaxy window

Quality Control of raw fastq reads

Do the exact same thing for the other 3 fastq files

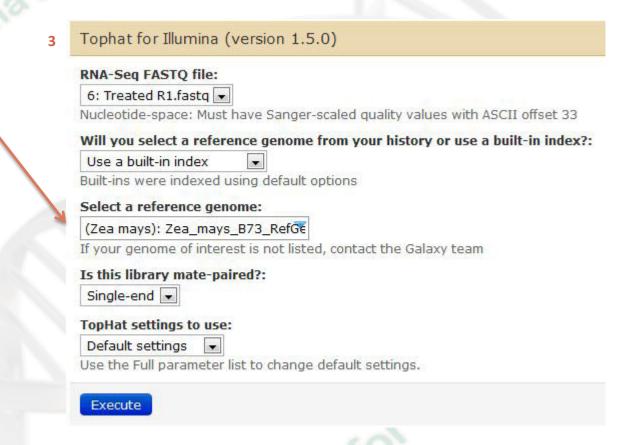
FastQC Output Report


This data looks awful because this is filtered data from a much larger fastq file. Better results when using entire file!

RNA-Seq Analysis Pipeline

TopHat

NGS: RNA Analysis


RNA-SFO

- 2

- Tophat for Illumina Find splice junctions using RNA-seq data
- <u>Cufflinks</u> transcript assembly and FPKM (RPKM) estimates for RNA-Seq data
- <u>Cuffcompare</u> compare assembled transcripts to a reference annotation and track Cufflinks transcripts across multiple experiments
- <u>Cuffdiff</u> find significant changes in transcript expression, splicing, and promoter use
- <u>Cuffmerge</u> merge together several Cufflinks assemblies

FILTERING

<u>Filter Combined Transcripts</u>
 using tracking file

- 1. Click on "NGS: RNA Analysis"
- 2. Click on "Tophat for Illumina"
- 3. Default window with options appears

TopHat

Tophat for Illumina (version 1.5.0)

RNA-Seq FASTQ file	:
4: Control R1.fastq	100000

1

Nucleotide-space: Must have Sanger-scaled quality values with ASCII offset 33

Will you select a reference genome from your history or use a built-in index?:

Use one from the history 2a

Built-ins were indexed using default options

Select the reference genome:

2: Treeshrew67_GeneS.._4487.fasta 2k

Is this library mate-paired?:

Paired-end **▼** 3

RNA-Seg FASTO file:

3: Control R2.fastq 💌

Nucleotide-space: Must have Sanger-scaled quality values with ASCII offset 33

Mean Inner Distance between Mate Pairs:

150 5

TopHat settings to use:

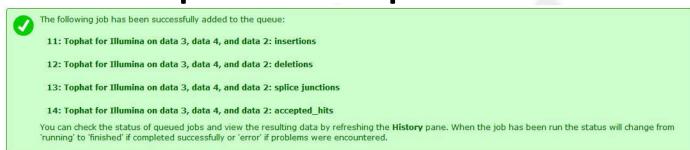
Default settings 🔻

Use the Full parameter list to change default settings.

Execute

7

- 1. Select forward fastg read file
- 2. Select reference genome:
 - a) Choose "Use one from the history"
 - b) Select the reference genome fasta
- Select "Paired-end"
- 4. Select reverse fastg read file
- 5. Input "150" (ask sequencing center for this info)
- 6. Can choose "Default settings" or "Full parameter list"
- 7. Click "Execute"


vi center for

8. Do the exact same thing for the other sample

Note about FASTA files not already indexed in Galaxy

- If a FASTA is not indexed in Galaxy, then it is easy to upload the appropriate FASTA file into Galaxy. (Get Data -> Upload File)
- However, it can take up to 5 hours extra to run TopHat because Bowtie has to index your uploaded FASTA file (best to have your own instance of Galaxy) each time you run TopHat!
- Where do I go to get a non-model organism FASTA file?
 - NCBI: http://www.ncbi.nlm.nih.gov/genome
 - Ensembl: http://useast.ensembl.org/info/data/ftp/index.html
 - iGenome: http://cufflinks.cbcb.umd.edu/igenomes.html
 - Your favorite species website: http://www...

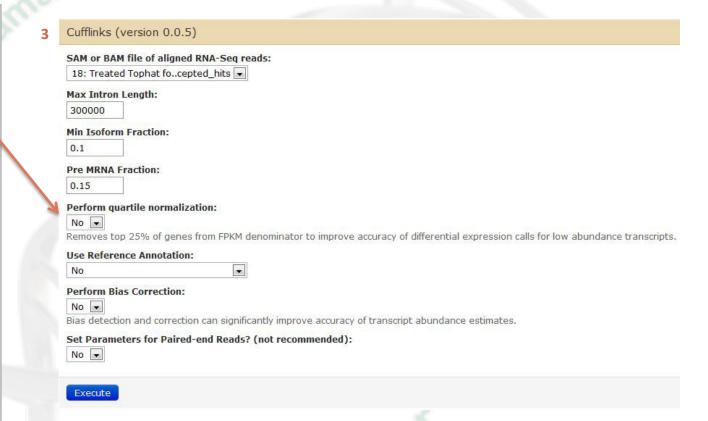
TopHat output files

Cufflinks

1

NGS: RNA Analysis

RNA-SEQ


 Tophat for Illumina Find splice junctions using RNA-seq data

<u>Cufflinks</u> transcript assembly and FPKM (RPKM) estimates for RNA-Seq data

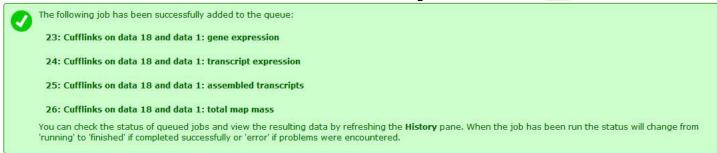
- <u>Cuffcompare</u> compare assembled transcripts to a reference annotation and track Cufflinks transcripts across multiple experiments
- <u>Cuffdiff</u> find significant changes in transcript expression, splicing, and promoter use
- <u>Cuffmerge</u> merge together several Cufflinks assemblies

FILTERING

<u>Filter Combined Transcripts</u>
 using tracking file

- 1. Click on "NGS: RNA Analysis"
- 2. Click on "Cufflinks"
- 3. Default window with options appears

Cufflinks


Cufflinks (version 0.0.5)	
SAM or BAM file of aligned RNA-Seq reads: 14: Control Tophat focepted_hits 1	
Max Intron Length: 300000	
Min Isoform Fraction: 0.1	1. 2.
Pre MRNA Fraction: 0.15	
Perform quartile normalization: No 2 Removes top 25% of genes from FPKM denominator to improve accuracy of differential expression calls for low abundance transcripts.	3.
Use Reference Annotation: Use reference annotation 3a	
Reference Annotation: 1: Treeshrew67 GeneS0X_4487.gtf 3b Gene annotation dataset in GTF or GFF3 format.	4.
Perform Bias Correction: No	5. 6.
Set Parameters for Paired-end Reads? (not recommended): No No	
Heflin Center fo	

- 1. Choose TopHat accepted hits file
- Perform quartile normalization (for this demo sample, choose "No")
- 3. Reference Annotation:
 - a) For genomes in scaffolds, choose "Use reference annotation"
 - b) Choose GTF file from history
- 4. Perform Bias Correction (for this demo, choose "No")
- 5. Click "Execute"
- 6. Do the exact same thing for the other TopHat accepted hits file

Note about GTF files for Cuff*

- If you use a GTF file from Ensembl, then you need to convert the chromosome column (column 1) to include 'chr' in front of the chromosome #. You can do this by:
 - Using Jeremy's published workflow "Make Ensembl GTF compatible with Cufflinks" in Galaxy:
 https://main.g2.bx.psu.edu/u/jeremy/w/make-ensembl-gtf-compatible-with-cufflinks
 - Use 'awk' to add 'chr' to column 1 (if using Mac or Linux)
- Where do I go to get a GTF file?
 - NCBI: http://www.ncbi.nlm.nih.gov/genome
 - Ensembl: http://useast.ensembl.org/info/data/ftp/index.html
 - iGenome: http://cufflinks.cbcb.umd.edu/igenomes.html
 - Your favorite species website: http://www...

Cufflinks output files

Cuffmerge

NGS: RNA Analysis

RNA-SEQ

- Tophat for Illumina Find splice junctions using RNA-seq data
- <u>Cufflinks</u> transcript assembly and FPKM (RPKM) estimates for RNA-Seq data
- <u>Cuffcompare</u> compare assembled transcripts to a reference annotation and track Cufflinks transcripts across multiple experiments
- <u>Cuffdiff</u> find significant changes in transcript expression, splicing, and promoter use
- <u>Cuffmerge</u> merge together several Cufflinks assemblies

FILTERING

 <u>Filter Combined Transcripts</u> using tracking file Cuffmerge (version 0.0.5)

GTF file produced by Cufflinks:

25: Treated Cufflinks..transcripts

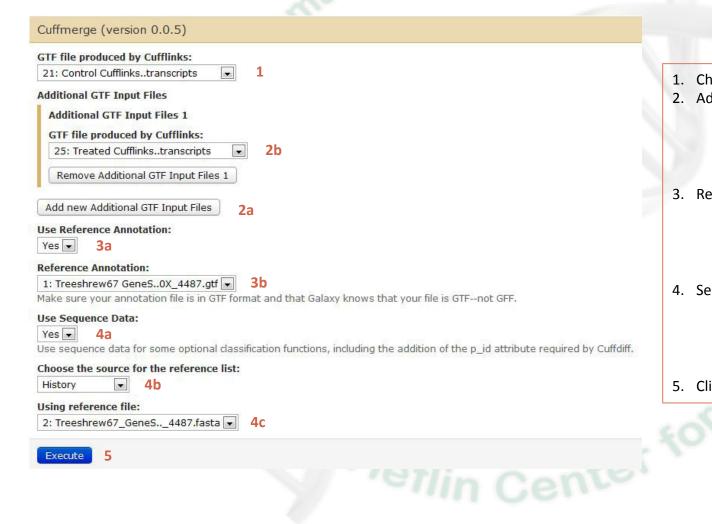
Additional GTF Input Files

Add new Additional GTF Input Files

Use Reference Annotation:

No

Use Sequence Data:


No

Use sequence data for some optional classification functions, including the addition of the p_id attribute required by Cuffdiff.

Execute

- 1. Click on "NGS: RNA Analysis"
- 2. Click on "Cuffmerge"
- 3. Default window with options appears

Cuffmerge

- 1. Choose GTF file produced by Cufflinks
- 2. Additional GTF Input Files:
 - a) Click on "Add new Additional GTF Input Files"
 - b) Choose other GTF file produced by Cufflinks
- 3. Reference Annotation:
 - a) Select "Yes" to Use Reference Annotation
 - b) Choose GTF Reference Annotation file from history
- 4. Sequence Data:
 - a) Slect "Yes" to Use Sequence
 Data
 - b) Choose "History"
 - c) Choose FASTA file from history
- 5. Click "Excecute"

Cuffmerge output files

You can check the status of queued jobs and view the resulting data by refreshing the **History** pane. When the job has been run the status will change from 'running' to 'finished' if completed successfully or 'error' if problems were encountered.

Cuffdiff

NGS: RNA Analysis

RNA-SEQ

- Tophat for Illumina Find splice junctions using RNA-seq data
- <u>Cufflinks</u> transcript assembly and FPKM (RPKM) estimates for RNA-Seq data
- <u>Cuffcompare</u> compare assembled transcripts to a reference annotation and track Cufflinks transcripts across <u>multiple experiments</u>
- Cuffdiff find significant changes in transcript expression, splicing, and promoter use
- <u>Cuffmerge</u> merge together several Cufflinks assemblies

FILTERING

<u>Filter Combined Transcripts</u>
 using tracking file

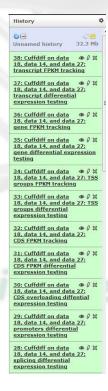
Cuffdiff (version 0.0.5) Transcripts: 27: Treated vs Contro..transcripts A transcript GTF file produced by cufflinks, cuffcompare, or other source. Perform replicate analysis: Perform cuffdiff with replicates in each group. SAM or BAM file of aligned RNA-Seg reads: 18: Treated Tophat fo..cepted_hits -SAM or BAM file of aligned RNA-Seg reads: 18: Treated Tophat fo..cepted_hits 💌 False Discovery Rate: 0.05 The allowed false discovery rate. Min Alignment Count: The minimum number of alignments in a locus for needed to conduct significance testing on changes in that locus observed between samples, Perform quartile normalization: Removes top 25% of genes from FPKM denominator to improve accuracy of differential expression calls for low abundance transcripts. **Perform Bias Correction:** Bias detection and correction can significantly improve accuracy of transcript abundance estimates. Set Parameters for Paired-end Reads? (not recommended):


- 1. Click on "NGS: RNA Analysis"
- 2. Click on "Cuffdiff"

No 🔻

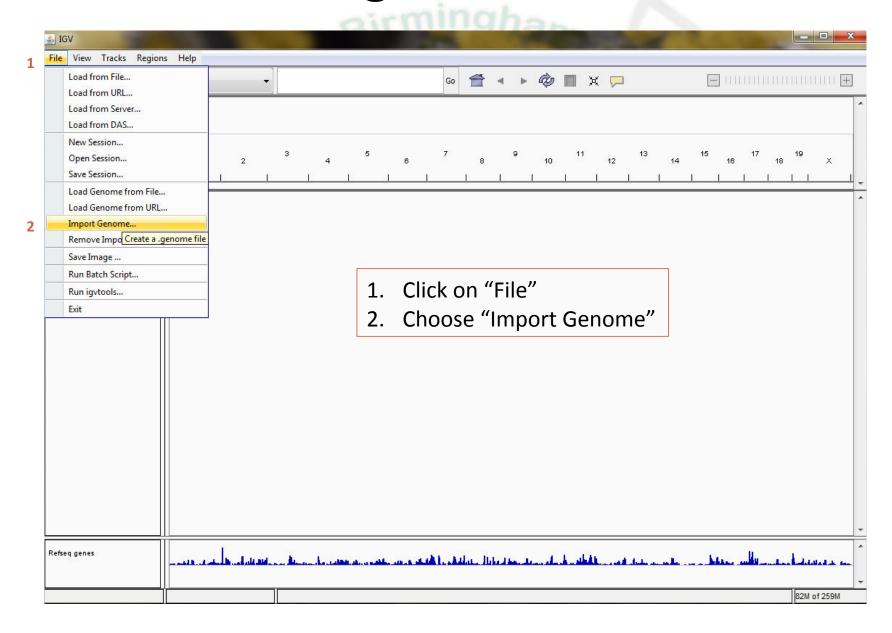
Execute

3. Default window with options appears


Cuffdiff

- Choose GTF transcript file from either Cuffmerge or Cuffcompare
- 2. Perform replicate analysis:
 - a) Choose "Yes"
 - b) Click "Add new Group"
 - c) Select a name to give the Group
 - d) Choose TopHat accepted hits file associated with this Group
 - e) If you have more than one TopHat accepted hits file associated with this Group, then click "Add new Replicate"
 - f) Click "Add new Group"
 - g) Select a name to give the Group
 - h) Choose TopHat accepted hits file associated with this Group
 - i) If you have more than one TopHat accepted hits file associated with this Group, then click "Add new Replicate"
 - j) Click "Add new Group" if you have another Group you want to add
- 3. Select a False Discovery Rate cutoff
- 4. Select the minimum # of reads that will align to a locus in order to perform significant testing
- 5. Perform quartile normalization (for this demo, choose "No")
- 6. Perform bias correction (for this demo, choose "No")
- 7. Click "Execute"

Cuffdiff output files

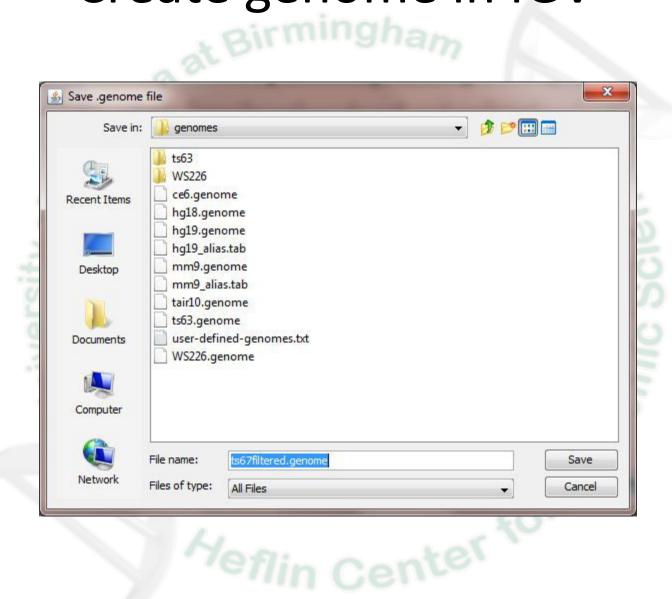


Transcript differential expression testing output

test_id	gene_id	gene	locus	sample_1	sample_2	status	value_1	value_2	log2(fold_change)	test_stat	p_value	q_value
TCONS_00000001	XLOC_000001	MRPL52	GeneScaffold_4487:152198-156919	Control	Treated	OK	136514	109554	-0.317401	2.94565	0.00322275	0.00537126
TCONS_00000002	XLOC_000002	MMP14	GeneScaffold_4487:164659-168821	Control	Treated	OK	127591	419087	1.71572	-51.7058	0	0
TCONS_00000003	XLOC_000003	SLC7A7	GeneScaffold_4487:2-126817	Control	Treated	OK	2810.33	1640.05	-0.776996	2.29497	0.0217349	0.0271686
TCONS_00000004	XLOC_000004	ENSTBEG00000000939	GeneScaffold_4487:2-126817	Control	Treated	NOTEST	0	0	0	0	1	1
TCONS_00000005	XLOC_000005	ENSTBEG00000000949	GeneScaffold_4487:2-126817	Control	Treated	ОК	799.391	730.767	-0.12949	0.0897554	0.928482	0.928482
TCONS 00000006	XLOC 000006	TIMP3	GeneScaffold 800:2226-57391	Control	Treated	OK	1.63872e+06	764572	-1.09984	44,4146	0	0

Gene differential expression testing output

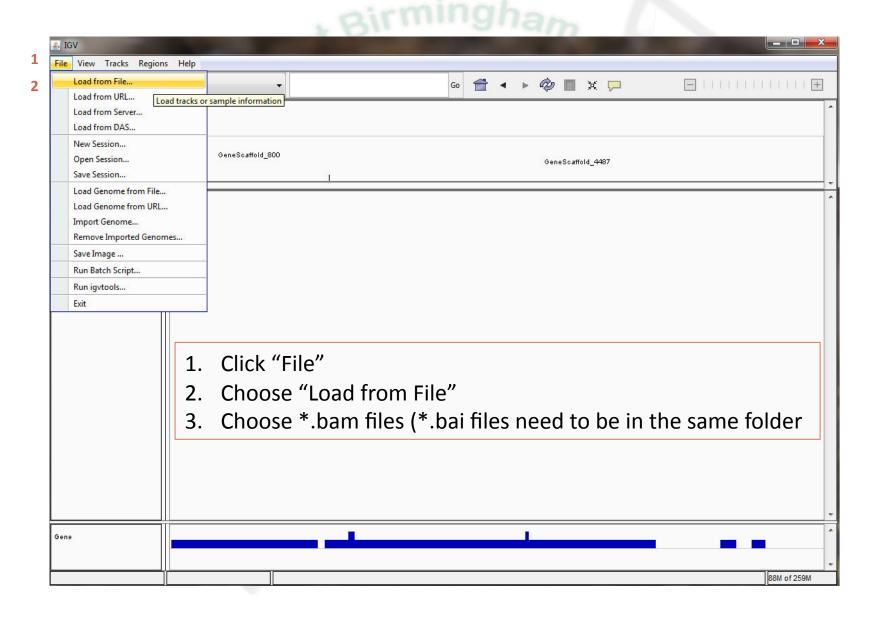
test_id	gene_id	gene	locus	sample_1	sample_2	status	value_1	value_2	log2(fold_change)	test_stat	p_value	q_value	sig
XLOC_000001	XLOC_000001	MRPL52	GeneScaffold_4487:152198-156919	Control	Treated	OK	136514	109554	-0.317401	2.94565	0.00322275	0.00537126	ye
XLOC_000002	XLOC_000002	MMP14	GeneScaffold_4487:164659-168821	Control	Treated	OK	127591	419087	1.71572	-51.7058	0	0	ye
XLOC_000003	XLOC_000003	SLC7A7	GeneScaffold_4487;2-126817	Control	Treated	OK	2810.33	1640.05	-0.776996	2.29497	0.0217349	0.0271686	ye
XLOC_000004	XLOC_000004	ENSTBEG00000000939	GeneScaffold_4487:2-126817	Control	Treated	NOTEST	0	0	0	0	1	1	no
XLOC_000005	XLOC_000005	ENSTBEG00000000949	GeneScaffold_4487:2-126817	Control	Treated	OK	799.391	730.767	-0.12949	0.0897554	0.928482	0.928482	no
XLOC_000006	XLOC_000006	TIMP3	GeneScaffold_800:2226-57391	Control	Treated	OK	1.63872e+06	764572	-1.09984	44.4146	0	0	ye

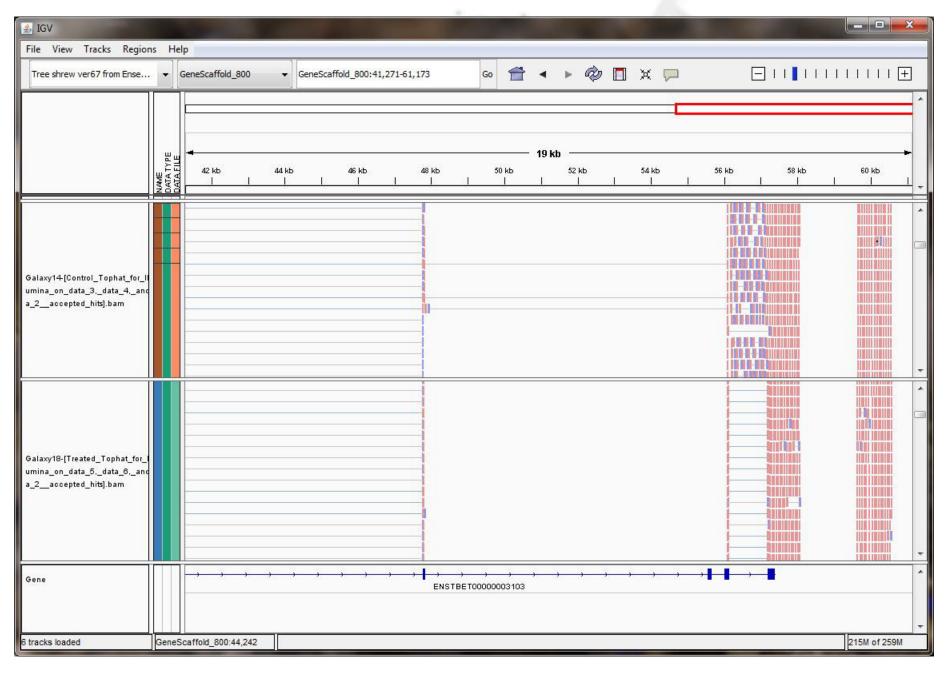

Unique identifier Required Descriptive name Browse FASTA file Optional Browse Cytoband file Optional Gene file Browse Browse Alias file Cancel × Unique identifier Descriptive name Tree shrew ver67 from Ensembl filtered to only contain GeneScaffold_800 & GeneScaffold_4487 Browse **FASTA file** C:\Users\dkcrossm\Desktop\Galaxy\Treeshrew\GeneScaffold_800_4487.fasta Optional Browse Cytoband file Gene file C:\Users\dkcrossm\Desktop\Galaxy\Treeshrew\Treeshrew67 GeneScaffold_800_4487.gtf Browse Browse Alias file Cancel

Need:

1. FASTA file (required)

Optional:


- 1. Cytoband file
- 2. Gene file (can use GTF)
- 3. Alias file


Save the *.genome file

Load aligned BAM files into IGV

IGV

References and web links

TopHat

- Trapnell C, Pachter L, Salzberg SL. <u>TopHat: discovering splice junctions with RNA-Seq</u>. <u>Bioinformatics</u> doi: 10.1093/bioinformatics/btp120
- http://tophat.cbcb.umd.edu/

Bowtie

- Langmead B, Trapnell C, Pop M, Salzberg SL.
 <u>Ultrafast and memory-efficient alignment of short DNA sequences to the human genome Genome Biol</u> 10:R25.
- http://bowtie-bio.sourceforge.net/index.shtml

Cufflinks

- Trapnell C, Williams BA, Pertea G, Mortazavi AM, Kwan G, van Baren MJ, Salzberg SL, Wold B, Pachter L.
 Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching
 - during cell differentiation Nature Biotechnology doi:10.1038/nbt.1621

 Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L.
- Improving RNA-Seq expression estimates by correcting for fragment bias Genome Biology doi:10.1186/gb-2011-12-3-r22
- Roberts A, Pimentel H, Trapnell C, Pachter L.
 <u>Identification of novel transcripts in annotated genomes using RNA-Seq Bioinformatics</u> doi:10.1093/bioinformatics/btr355
- http://cufflinks.cbcb.umd.edu/
- TopHat and Cufflinks protocol
 - Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L.
 <u>Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks</u>
 Nature Protocols 7, 562-578 (2012) doi:10.1038/nprot.2012.016
- IGV
 - http://www.broadinstitute.org/igv/

Thanks! Questions?

Contact info:

David K. Crossman, Ph.D.

Bioinformatics Director

Heflin Center for Genomic Science

University of Alabama at Birmingham

http://www.heflingenetics.uab.edu

dkcrossm@uab.edu