Beyond Genome Browser

A more efficient system for browsing epigenetic data

Visiting student@DFCI Hanfei Sun

3 parts

- Limits of Genome Browser
- Atlas, Recommendation and Comparison
- Prototype and 3 examples

A glimpse to traditional Genome Browser

APT (Annotation, Position and Track)

Screenshot of UCSC Genome Browser

Features of APT

Select regions of interest

Add tracks of relevance

Find visual correlations

Drawbacks of APT

Which regions would be potentially interesting?

Among hundreds of tracks, which tracks would be related to current one?

How can I get an estimate of correlations in whole-genome level?

Sunday, July 29, 12

A new framework -ARC :

Atlas, Recommendation and Comparison

Presume we already have.

- target prediction score: regulatory potential for a given gene
- distance: a measurement of similarity between datasets

ARC structure

Function	Input	Output
Atlas	one gene	target prediction for this gene in all datasets
Recommendation	one dataset	top <i>n</i> nearest datasets sorted by distance
Comparison	two or more datasets	matrices of target prediction

Comparison of APT and ARC

	APT	ARC
Atom	Position (billions bp)	Gene (thousands)
Value	Profile or Interval	Target Prediction Score
Find the most correlated tracks	Visual	Recommendation
Find binding sites among datasets	Visual	Atlas
Find differences between two datasets	Find differences between two datasets	

Implementation

$$S_g = 100 \sum_{i=1}^{k} e^{-(0.5 + 4\Delta_i)}$$

 $\rho_{X,Y}$

Statistics

Web

Distance

SQLAlchemy

Algorithm from Qianzi et al. (2011) *Cancer Research*

Three stories about ARC

ARC

Check the atlas of ESR2 gene regulated by MYC

Input a gene

S	tari	t fr	om	thi	s g	en	e
_					- 0		_

Gene Symbol

esr2

ESR2: estrogen receptor 2 (ER beta)

Start fr	om this gen	e	
Gene	Symbol		
esr2			
	Sł	how atlas	

Result Page

Distribution of ESR2 (NM_001040275)'s target score on all datasets

Dataset ID: 5320 Target prediction for ESR2 (NM_001040275) 1.79

Factor: H3K27me3 Focus on H3K27me3 CellLine: H1 Focus on H1 CellType: Embryonic Stem CellPop: Tissue: Embryo Disease: Normal

Description: Reference Epigenome: ChIP-Seq Analysis of H3K27me3 in hESC Cells; renlab.H3K27me3.hESC-03.01 Condition:

Paper: Human DNA methylomes at base resolution show widespread epigenomic differences. Focus on this paper

Authors: Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ecker JR, Ren B

+

Load to

Genome

Browser

+

Dataset list

Dataset ID: 5179 Target prediction for ESR2 (NM_001040275) 1.55

Factor: MYC Focus on MYC CellLine: BL-41 Focus on BL-41

Narrow your result

Dataset ID: 5179 Target prediction for ESR2 (NM_001040275) 1.55

+

Factor: MYC Focus on MYC CellLine: BL-41 Focus on BL 41 CellType: B Lymphocyte CellPop: Tissue: Blood Disease: Burkitt's Lymphoma

Description: BL41_ChIP Condition:

Paper: Deep sequencing of MYC DNA-binding sites in Burkitt lymphoma.

Focus on this paper

Authors: Seitz V, Butzhammer P, Hirsch B, Hecht J, Gütgemann I, Ehlers A, Lenze D, Oker E, Sommerfeld A, von der Wall E, König C, Zinser C, Spang R, Hummel M

After

narrowing

Target prediction for ESR2 (NM_001040275) 1.55

Factor: MYC Focus on MYC CellLine: BL-41 Focus on BL-41 CellType: B Lymphocyte CellPop: Tissue: Blood Disease: Burkitt's Lymphoma

Description: BL41_ChIP Condition:

Paper: Deep sequencing of MYC DNA-binding sites in Burkitt lymphoma. Focus on this paper Authors: Seitz V,Butzhammer P,Hirsch B,Hecht J,Gütgemann I,Ehlers A,Lenze D,Oker E,Sommerfeld

A,von der Wall E,König C,Zinser C,Spang R,Hummel M

Dataset ID: 5178 Target prediction for ESR2 (NM_001040275) 0.67

Factor: MYC Focus on MYC CellLine: Ramos Focus on Ramos CellType: B Lymphocyte CellPop: Tissue: Disease: Burkitt's Lymphoma

Description: Ramos_ChIP Condition:

Paper: Deep sequencing of MYC DNA-binding sites in Burkitt lymphoma.

Focus on this paper Authors: Seitz V,Butzhammer P,Hirsch B,Hecht J,Gütgemann I,Ehlers A,Lenze D,Oker E,Sommerfeld A,von der Wall E,König C,Zinser C,Spang R,Hummel M

Dataset ID: 727 Target prediction for ESR2 (NM_001040275) 0.49

Factor: MYC Focus on MYC CellLine: K562 Focus on K562 CellType: Erythroblast CellPop: Tissue: Bone Marrow Disease: Chronic myeloid leukemia

Description:

┿

┿

Recommend some co-binding/co-regulation transcription factors of CTCF in Hela cell

Search page

You want to find datasets that..

Species (Only Homo sapiens available)

Homo sapiens

Factor [e.g. H3K36me3]

ctcf

CTCF

CTCFL

Cell, Tissue or Disease [e.g. Hela]

Search Dataset

You want to find datasets that..

Species (Only Homo sapiens available)

Homo sapiens

Factor [e.g. H3K36me3]

ctcf

Narrow your results by...

Cell, Tissue or Disease [e.g. Hela]

Hela

Search Dataset

Rank I: itself

Dataset ID: 975 Similarity: 1.00 Focus Diff

Factor: CTCF Focus on CTCF CellLine: Hela Focus on Hela CellType: Epithelial CellPop: Tissue: Cervix Disease: Cervical Adenocarcinoma

Description: HeLa CTCF Condition:

Paper: Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains.

Focus on this paper Authors: Cuddapah S,Jothi R,Schones DE,Roh TY,Cui K,Zhao K

Rank 2: another CTCF

Dataset ID: 1646Similarity: 0.73FocusDiffFactor: CTCFFocus on CTCFCellLine: HelaFocus on HelaCellType: EpithelialCellPop:Tissue: CervixDisease: Cervical AdenocarcinomaDescription:Condition:Paper: The ENCyclopedia Of DNA Elements (ENCODE) UTA
Focus on this paper
Authors: Iyer VR

Rank 3: an interesting co-factor?

Dataset ID: 978 Similarity: 0.55 Focus Diff

Factor: H2AFZ Focus on H2AFZ CellLine: Hela Focus on Hela CellType: Epithelial CellPop: Tissue: Cervix Disease: Cervical Adenocarcinoma

Description: H2A.Z (low salt) ChIP Condition: low salt

Paper: H3.3/H2A.Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions.

Focus on this paper Authors: Jin C,Zang C,Wei G,Cui K,Peng W,Zhao K,Felsenfeld G

The interaction validated in a previous paper

Figure from Yusufzai et al. (2004) Molecular Cell

ARC

Compare 2 transcription factors in stem cell

A paper about transcription factors

Figures from: Kunarso et al. (2010) *Nature genetics*

Two datasets from that paper

Dataset ID: 3514 Similarity: 1.00 Focus Diff

Factor: NANOG Focus on NANOG CellLine: H1 Focus on H1 CellType: Embryonic Stem CellPop: Tissue: Embryo Disease: Normal

Description: NANOG Condition:

Paper: Transposable elements have rewired the core regulatory network of human embryonic stem cells.

Focus on this paper Authors: Kunarso G,Chia NY,Jeyakani J,Hwang C,Lu X,Chan YS,Ng HH,Bourque G

Dataset ID: 3513 Similarity: 0.05 Focus Diff

Factor: CTCF Focus on CTCF CellLine: H1 Focus on H1 CellType: Embryonic Stem CellPop: Tissue: Embryo Disease: Normal

Description: CTCF Condition:

Paper: Transposable elements have rewired the core regulatory network of human embryonic stem cells. Focus on this paper Authors: Kunarso G,Chia NY,Jeyakani J,Hwang C,Lu X,Chan YS,Ng HH,Bourque G

Compare them

Dataset ID: 3513

Similarity: 0.05

Focus Diff

Factor: CTCF Focus on CTCF CellLine: H1 Focus on H1 CellType: Embryonic Stem CellPop: Tissue: Embryo Disease: Normal

Description: CTCF Condition:

Paper: Transposable elements have rewired the core regulatory network of human embryonic stem cells.

Focus on this paper Authors: Kunarso G,Chia NY,Jeyakani J,Hwang C,Lu X,Chan YS,Ng HH,Bourque G

Control Panel

Target Score in Dataset 351	4 (NANOG H1) 0	380
Details of Dataset 3514;	Summary of Dataset 3514	
Target Score in Dataset 351 Details of Dataset 3513 ;	3 (CTCF H1) 0 Summary of Dataset 3513	264
Type in a gene symbol:		

Table view

	Refseq	Target Score in Dataset 3514 (NANOG H1)	Target Score in Dataset 3513 (CTCF H1)
1	A2M	0	C
2	NAT2	0	62.1
3	ACADM	1.4	C
4	ACADS	0	43.5
5	ACADVL	50.1	19.3
6	ACAT1	0	C
7	ACVRL1	10.3	58.1
8	PSEN1	56	C
9	ADA	84	13.8
10	SGCA	0	153.7

Graph view

After filtering by AEBP

Type in a gene symbol: aebp

Summary of ARC

visualization
 + statistics in real time

- searching data by meta-data
 + by data
- integration with thousands of datasets or more

Acknowledgment

X. Shirley Liu lab Tao Liu Len Taing Bo Qin Myles Brown Lab

We are recruiting full-time bioinformatic analyst

2 Galaxy / Cistrome

http://cfce1.dfci.harvard.edu/cfce/careers.

Zhang lab Tongji team

Thank you for your attention!