The National Center for Genome Analysis Support and Galaxy

William K. Barnett, Ph.D. (Director)

Richard LeDuc, Ph.D. (Manager)

National Center for Genome Analysis Support

Galaxy Community Conference July 27, 2012

Summary

- NCGAS and its mission
- NCGAS cyberinfrastructure
- The 100 Gigabit demonstration

- Scaling genomics analysis
- Trinity optimization

Changing genomics analytical needs

- Next Gen sequencers are generating more data and getting cheaper
- Sequencing is:
 - Becoming commoditized at large centers and
 - Multiplying at individual labs
- Analytical capacity has not kept up
 - Bioinformatics support
 - Computational support (thousand points solution)

GCC. July 27, 2012

Storage support

NCGAS widens the analytical bottleneck

- Funded by National Science Foundation
- Large memory clusters for assembly
- Bioinformatics consulting for biologists
- Optimized software for better efficiency
- Open for business at: http://ncgas.org

Making it easier for Biologists

- Galaxy interface provides a "user friendly" window to NCGAS resources
- Supports many bioinformatics tools
- Available for both research and instruction.

National Center for Genome Analysis Support: http://ncgas.org

NCGAS Cyberinfrastructure at IU

- Mason large memory cluster (512 GB/node)
- Quarry cluster (16 GB/node)
- Data Capacitor (1 PB at 20 Gbps throughput)
- Research File System (RFS) for data storage
- Research Database Cluster for managing data sets.
- All interconnected with a high speed internal network (40 Gbps)

GALAXY.IU.EDU Model

National Center for Genome Analysis Support: http://ncqas.org

NCGAS Sandbox Demo at SC 11

- P STEP 1: data preprocessing, to evaluate and improve the quality of the input sequence
- STEP 2: sequence alignment to a known reference genome
- STEP 3: SNP detection to scan the alignment result for new polymorphisms

National Center for Genome Analysis Support: http://ncgas.org

Two Options for Computation and Storage

How would this work at scale?

- 1. Biologists use Galaxy to execute workflows
- Sequence data mounted via Lustre WAN or automatically transferred using Internet2
- Data Capacitor flows data into Mason or other computational clusters
- Data Capacitor mounts or mirrors reference data from NCBI or other sources

GCC. July 27, 2012

5. Results delivered through web interfaces and to visualization or other science tools

Performance Improvements Butterfly

Richard LeDuc GCC 2012 7/27/2012

Final Results

Trinity Results

- Significantly reduced runtime, while maintaining correctness of results
- Results are published
- Source code is commit to official SourceForge repository
- Continued support for HPC optimization for Trinity
- Brian Haas at Broad is developing Trinity workflows for Galaxy

In Sum...

- NG Sequencing is creating a analytical problem that cannot be solved at sequencing centers
- NCGAS can provide a global scale infrastructure to better serve the needs of biologists who cannot become bioinformaticians to accomplish their research.
- Trinity is no longer a resource hog

Thank You

Questions?

Bill Barnett (<u>barnettw@iu.edu</u>)
Rich LeDuc (<u>rleduc@iu.edu</u>)

