

Input files for shRNA-seq analysis

0	m (m)		XAR	~ 10	. 61. 5	• 🛃 • 🕅	. 0.	Search in S	heat)))))))))))))))))))
-	Home	Layout	Tables	Charts	SmartArt	Formulas	Data	Review	silect		^ ¢
Ec		Fon		Alignment	Number		mat	Cells	Theme		1 Mr.
				- Contraction of the local sector	General		(Trank				
	Cali	bri (Body)	· 12 ·	=-	General	Sel *	17	-	Aa -		
Pa	ste B	I U	<u>А</u> - <u>А</u> -	Align	- %	> Conditiona	al Styles		Themes -	Aa≁	
	E1	÷ 0) 💿 (= fx				÷				
1	A	B	C	D	E	F	G	н	1	1	K
	ID	Sequences	group	Replicate							
2		3 GAAAG	Day 2	1	1						
3		5 GAACC	Day 10		1						
4		GAAGA	Day 5 GFP neg		1						
S		5 GAATT	Day 5 GFP pos		1						1.
6 7		B GACAC	Day 2		2						
7		1 GACCA	Day 10		2						11
8		B GACGT	Day 5 GFP neg		2						
9		1 GACTG	Day 5 GFP pos		2						
10	3	3 GAGAA	Day 2		3						
11		GAGCT	Day 10		3						
12		3 GAGGG	Day 5 GFP neg		3						
13	4	5 GAGTC	Day 5 GFP pos		3						
14											
15											
16											
17											
18											
19											
20											10
21											
22											

	In	pu	t fi		s fo ana				N	Α.	-Se	pq	
•	00				Hai	irpins	2a.txt						H.
2	11	8	* 6 *	💰 🗹	a. M.	Σ • 1	2 0 • ₩ •	(Q-	Search	in Sheet	6) >>
T	A Home	Layout	Tables	Charts	SmartArt	F	ormulas	Data	Revie	ew		^	¢-
Pa	A1	bri (Body)	• 12 •	Align	General	,	Conditional Formatting	Styles	Actions	Aab	A 200 B		
-	AI	17 U	o (= Jx	ID	C	D	E	1	E I	G	Н	1	-
1	ID	Sequence	s		Gene	0				u	п	1	
2	Control1		TGGGCGAGAGT	AAG	2								
3	Control2	CCGCCTG	AAGTCTCTGATT	AA	2								
4	Control3	AGGAATT	ATAATGCTTATO	TA	2								
5	Hairpin1	AAGGCAG	GAGACTGACCAC	CTA	4								
6	Hairpin2		CTGGTGTTACT		4								
7	Hairpin3		AAATAGAGCTG		4								
8	Hairpin4		TCTTCTGTGAAG		4		1	_				_	-
9	HairpinS		GTGGGTCAGAA		4								
10	Hairpin6		CAGATCTCAAG		4			-			-		
11 12	Hairpin7 Hairpin8		GAAAGACATCT		7		-	-	-			-	
12	Hairpin8 Hairpin9		CATAGAGAGAAGTT		8			-			-	-	-11
14	Hairpin10		GTTCAAGACCA		8							-	
15	Hairpin10		ATCTTCGAGTGC		8			-					
16			TAGTAGGACTT		8								
17	Hairpin13		TTCTTTGCTAGO		8								
18	Hairpin14		GTGTTGTCCTCT		8								
19	Hairpin15		AATGGGAACCT		8		1						
20	Hairpin16	CTGCGAG	ACATCGACCAT	GAA	9								
21	Hairpin17	AAGGTGA	ATCCTTATGCTG	TA	9								
22	Hairpin18	TTCATGC	TGCACCAAGATO	TA	9								

Demo

- Analyse data from Zuber et al. (2011) Nature
- AML mouse model
- ~ 1000 shRNAs (3-6 per gene) targeting known chromatin regulators
- Samples taken at Day 0 and Day 14. Hits identified by comparing hairpin abundance between these two time points, and looking for shRNAs that drop out over time

Sind Bed 100	l (version 1.0.5)
Input File Typ	e:
Table of Cou	nts 💠
Counts Table	
37: zuber_co	unt_nature.txt 🔶
Hairpin Anno	ation:
	irpinanno_nature.txt 😫
Sample Annot	ation:
	mples_nature.txt
Filter Low CP	
Yes 🛊	
Ignore hairpin	s with very low representation when performing analysis.
Minimum CPN	1:
0.5	
Minimum San	

Analysis Type:

Generalised Linear Model 💠

Classic Exact Tests are useful for simple comparisons across two sampling groups. Generalised linear models allow for more complex contrasts and gene level analysis to be made.

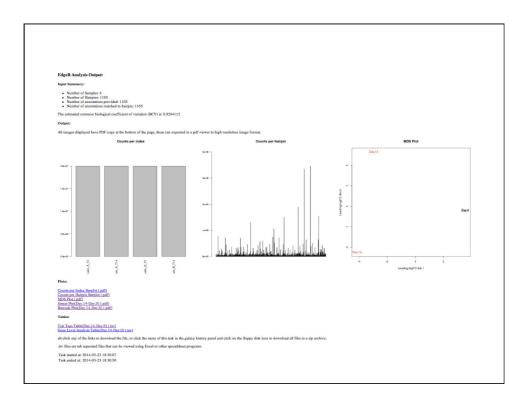
Contrasts of interest:

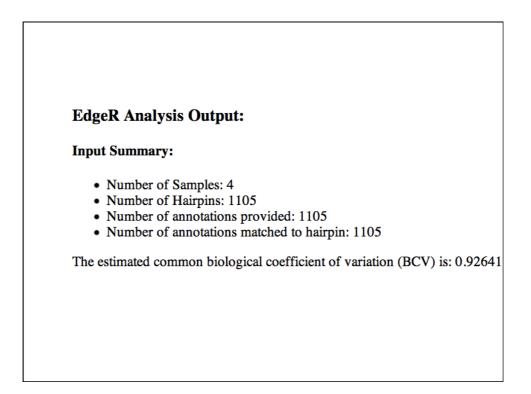
Day 14 - Day 0

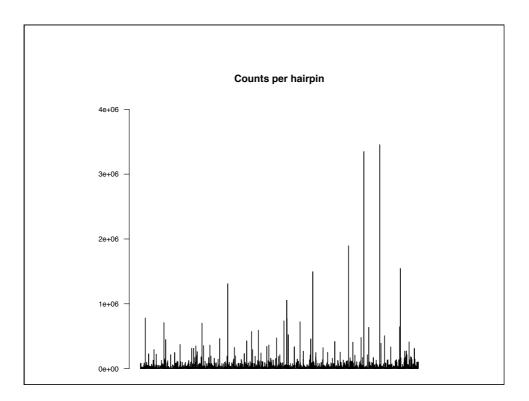
Specify equations defining contrasts to be made. Eg. KD-Control will result in positive fold change if KD has greater expression and negative if Control has greater expression.

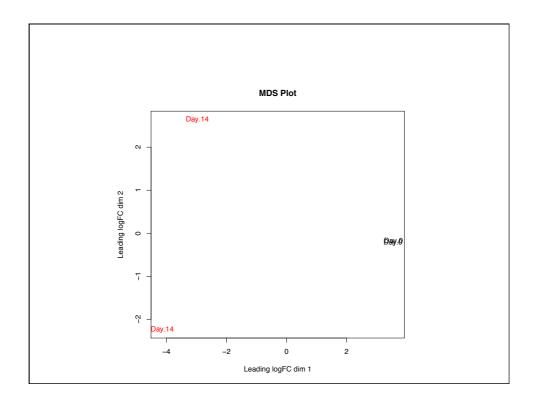
Perform Gene Level Analysis?:

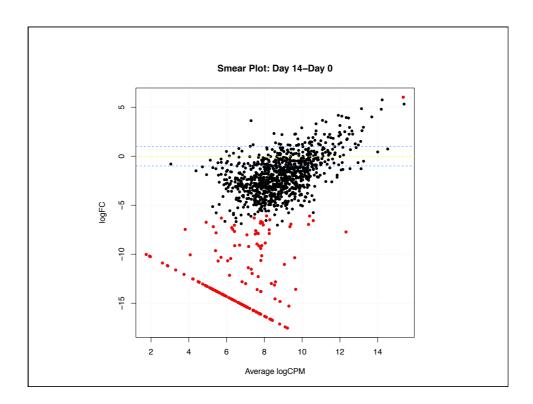
Yes 🛊

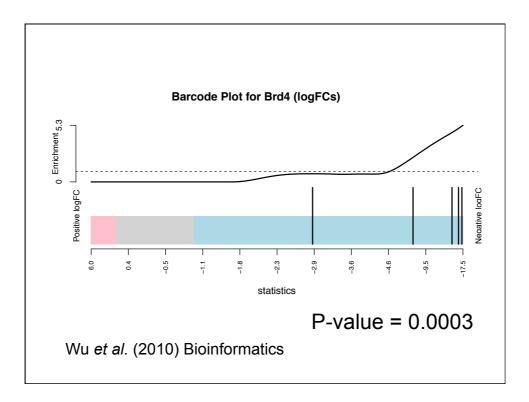

2


Analyse LogFC tendencies for hairpins belonging to the same gene.


Minimum Hairpins:


Only genes with at least this many hairpins will be analysed.


Gene Select By Gene Id	ion Method: entifier 💠
<u> </u>	Genes to Plot:
Brd4	
commas. FDR Thresh	re exact match with the values in input file and separate selections with old:
0.05	
All observat	ions below this threshold will be highlighted in the smear plot.
Absolute Lo	pgFC Threshold:
6.0	
	I to meeting the FDR requirement, the absolute value of the log–fold–change of tion must be above this threshold to be highlighted.



Future work: RNA-seq analysis workflow

- Goal is to put together a workflow that uses WEHI developed tools:
 - *subread* for mapping short reads to the genome
 - *featureCounts* to obtain gene-level summaries in each sample
 - *limma-voom* to perform differential expression analysis

Liao *et al.* (2013) Nucleic Acids Res Liao *et al.* (2013) Bioinformatics Law *et al.* (2014) Genome Biology

Acknowledgements

Molecular Medicine Shian Su Jenny Dai

Toby Sargeant Jarny Choi Nick Seidenman

Cynthia Liu

Jamie Gearing Darcy Moore Natasha Jansz Kelan Chen Andrew Keniry Marnie Blewitt

Mark McKenzie Ross Dickins

Doug Hilton

Bioinformatics Gordon Smyth Yunshen Chen Aaron Lun Yang Liao, Wei Shi Matthew Wakefield Keith Satterley

Stem Cells and Cancer Julie Sheridan

Laura Galvis Marie-Liesse Asselin-Labat

CSCD Iris Tan, Grant Dewson

IMP, Vienna Johannes Zuber

AUSTRALIAN MATHEMATICAL SCIENCES INSTITUTE Australian Government

National Health and Medical Research Council