

Cell Image Analysis with Galaxy

Yulia Arzhaeva

Galaxy Australasia Workshop 2014

CSIRO Computational Informatics www.csiro.au

Talk contents

1. CloudBased Image Analysis & Processing Toolbox

2. Cellular Imaging tools

3. Application:
quantify complexity
of neurites

Cloud-based image analysis and processing

Image Analysis and Processing for for everyone.

The <u>Cloud-based Image Analysis and Processing Toolbox</u> project provides access to existing biomedical image processing and analysis tools via remote user-interface using the <u>NeCTAR</u> cloud.

Use Toolbox

Demo

Project Blog

Use project's free server

Watch other demos

Project Blog

Cell image analysis needs

Rat brain neurite outgrowth image

Neurites segmented

Fluorescence microscopy image

Cell statistics

CellNo	Area	Perimeter	TotalNeuriteLength	MaxNeuriteLength	MaxBranchLayer		
	48	28	7.02	7.02	1		
2	90	40	333.77	125.89	5		
3	64	32	113.79	78.38	2		
4	527	124	25.55	25.55	1		
5	92	38	0	0	0		
6	115	47	26.85	26.85	1		
7	157	58	6.33	6.33	1		
8	77	38	30.28	23.26	2		
9	158	58	141.39	81.66	2		
10	130	49	0	0	0		
11	79	40	0	0	0		
12	374	90	111.33	57.41	2		
13	629	153	0	0	0		
14	76	32	5.54	5.54	1		

Industrial cell screening systems use our software modules

- ImageXpress® by Molecular Devices
- Pathway HT™ by BD Biosciences
- Opera® by Perkin Elmer

Cellular Imaging toolbox

- 1. Most of HCA-Vision cell analysis functions
 - Detect neurons/cells
 - Detect nuclei
 - Detect neurites
 - Detect dots
 - Statistics for objects, lines and dots

Convenience functions

- Arithmetic and logic operations with images
- Filter objects by morphology attributes (area, elongation, etc)
- Label objects
- Overlay image with labelled mask

Tools

search tools

(3)

Get Data

- <u>Upload a bag of files</u> multiple files to one dataset.
- · Upload File from your computer

Cellular Imaging

- Find cytoplasm from nucleus donut Identify cytoplasm as a donut-like region around a nucleus
- <u>Detect dots</u> Detect dot-like structures in a 2D image
- Create donut around a nucleus
 Create a donut-like region around a cell nucleus
- Objects statistics Compute statistics of objects in a binary or labeled image
- <u>Detect nuclei from cytoplasm</u>
 <u>holes</u> Detect nuclei from absence of stain of cytoplasm
- <u>Detect lines</u> Detect linear features in an image
- Arithmetic operations with two images Add, subtract, multiply, and divide two images
- <u>Detect nuclei</u> Detect nuclei in a 2D microscope image

Objects statistics (version 1.1.0)

Input image:

5: Neuron bodies binary mask for dendrits-small.tif \$

An input image could be binary or labelled. In a binary image each object is labelled 1 and a background is labelled 0. In a labeled image each object gets a label from 1 to N and the background is labelled 0.

Execute

Compute statistics for each object in an input image. It returns a table with 12 columns and Number_of_objects rows:

- 1. object number,
- 2. area object area
- 3. perimeter object perimeter
- 4. rowcentre Y-coordinate of an object centroid
- 5. columncentre X-coordinate of an object centroid
- 6. minellipse object width
- 7. majellipse object length
- 8. angleellipse object orientation (an angle with a horizontal axis, measured in degrees)
- MERtop Y-coordinate of the left top corner of Minimum Enclosing Rectangle (also called a bounding box)
- 10. MERbottom Y-coordinate of the right bottom top corner of Minimum Enclosing Rectangle
- 11. MERleft X-coordinate of the left top corner of Minimum Enclosing Rectangle
- 12. MERright X-coordinate of the right bottom top corner of Minimum Enclosing Rectangle

=_ Galaxy				Analyze D	ata Workflow	Shared Dat	a + Visuali:	zation - Help	→ User¬	8		
Tools	number	area	perimeter	rowcentre	columncentre	minellipse	majellipse	angleellipse	MERtop	MERbottom	MERleft	MERrigh
	1	1250	172	12.388	174.423	27.5148	58.9309	-5.00511	1	28	145	20
search tools	2	449	107	7.49443	345.541	18.0306	33.767	-3.89746	1	17	328	36
Get Data	3	2405	256	27.4183	368.834	46.2345	69.832	-43.2021	1	62	336	40
 Upload a bag of files multiple files 	4	539	124	7.42115	793.032	15.6475	46.8322	9.99764	1	18	768	81
to one dataset.	5	638	126	11.4828	892.182	22.3224	38.8694	-33.9003	1	28	878	91
 Upload File from your computer 	6	1676	237	35.0024	935.458	41.7682	55.7147	-82.3959	1	61	914	96
Cellular Imaging	7	6053	382	70.7272	265.492	84.5831	91.8653	26.5839	29	113	217	31
	8	1538	191	75.6417	169.127	43.1737	45.9412	84.2586	53	101	147	19
 Find cytoplasm from nucleus donut Identify cytoplasm as a 	9	1960	238	88.6827	727.794	37.2721	69.1666	24.1668	63	115	696	76
donut-like region around a	10	1568	196	87.4503	992.256	38.5781	53.1005	-37.6794	65	110	966	10
nucleus	11	1925	214	98.7823	132.435	44.7846	55.6886	54.08	74	126	105	16
Detect dots Detect dot-like	12	1330	178	107.259	190.055	35.3172	48.6098	-60.2497	80	128	170	20
structures in a 2D image	13	2002	235	111.215	1043.57	44.5569	59.1568	13.1276	84	137	1013	10
Create donut around a nucleus	14	1834	236	114.432	937.11	38.8714	65.4018	-3.05326	90	134	906	9
Create a donut-like region around	15	1614	189	121.127	100.496	40.6281	51.3204	79.542	92	144	80	1
a cell nucleus	16	1946	210	124.752	495.153	44.3777	56.8216	30.9893	101	150	468	5
Objects statistics Compute	17	2138	236	129.522	642.493	48.4438	59.1329	-43.9339	102	160	616	6
statistics of objects in a binary or	18	2290	232	148.239	208.44	45.9648	64.2582	-32.6102	121	175	178	2
labeled image	19	2189	234	150.273	1032.52	45.0372	63.3237	34.2009	123	178	1003	10
Detect nuclei from cytoplasm	20	2795	248	159.813	351.989	58.6932	60.9443	-81.7497	127	192	323	3
holes Detect nuclei from absence	21	3675	294	166.353	443.78	66.8442	71.0862	26.5248	132	203	410	4
of stain of cytoplasm	22	2325	236	162.843	773.672	48.0579	63.339	-22.4377	134	187	742	8
Detect lines Detect linear features	23	2657	262	189.868	961.155	53.656	65.3088	-73.3368	152	219	930	9
in an image	24	3428	264	192.211	693.137	58.8714	74.5418	-37.4402	161	225	660	7
Arithmetic operations with two	25	2514	248	194.377	265.574	48.7257	66.6336	-60.7394	164	226	236	29
images Add, subtract, multiply,	26	2774	262	196.2	831.35	56.3521	63.6368	-30.8749	164	229	799	8
and divide two images	27	1520	212	200.634	84.4467	30.295	66.2711	51.5178	171	230	60	10
Detect nuclei Detect nuclei in a 2D	28	1930	206	207.075	618.906	41.6111	59.7872	-61.8117	179	233	593	6
microscope image	29	1827	208	209.744	177.574	39.484	59.5171	13.5822	188	230	149	20
Detect cells Detect cells with or	30	2227	226	232.758	315.546	48.2655	59.2174	58.4577	204	263	290	3
without using a nucleus image as	31	2129	246	236.886	555.19	43.8577	65.1904	-45.5434	204	264	521	5
a mask	32	2788	308	239.576	750.853	55.4547	70.8689	-69.4013	207	286	718	7
Overlay image with labelled mask	33	1585	200	252.38	226.977	29.8167	69.3156	-73.3237	220	282	207	2
Create a colourful overlay image	34	2227	224	265.116	435.236	50.1688	57.2798	71.9878	236	295	409	4
from an original image and a	35	3257	272	281.958	875.001	58.3221	72.9602	51.856	248	315	837	90
labelled mask	36	2213	214	278.79	568.968	49.207	57.8204	-19.8598	251	303	541	59

Background Biology

 Neurons are cells which transmit information through electrical or chemical signals

They are core components of the nervous system (brain and spine)

- Neurons are made up of:
 - A cell body (sometimes called a soma or neuron body)
 - Dendrites ("receivers")
 - An axon ("a transmitter")
 - NB. Collectively, dendrites and axons are called neurites

Neuronal Complexity

- The impact of a drug on a neurites ability to transmit information is of interest for neuropathological conditions such as Alzheimer's disease
- One way to measure this is to quantify the complexity of neurites
 - Length of neurites
 - Number of intersection points
 - Number of primary neurites

Find primary neurites: an algorithm

Image of neural cells

Demo on cloudimaging.net.au

Thank you

Cloud Based Image Analysis and Processing Project Team:

Tomasz Bednarz, Piotr Szul, Dadong Wang, Yulia Arzhaeva, Shiping Chen, Alex Khassapov, Neil Burdett, Ryan Lagerstrom, John Taylor

W cloudimaging.net.au

CSIRO Computational Informatics www.csiro.au

