
The Galaxy Toolshed
usegalaxy.org/toolshed

The Galaxy API

API Foundation

• Technologies

• Representational State Transfer (REST)

• Sessionless operations via HTTP

• JavaScript Object Notation (JSON)

GO

Other API Interfaces

• Library permissions

• Forms

• Sample tracking requests and samples

• Manage users, roles, and quotas

• Execute tools and workflows

End-to-end pipelines

• Automatically upload data retrieved from instruments

• Start a workflow

• Move outputs to a data library

Beneath the Clouds
Building your own Galaxy production service

usegalaxy.org/production

Galaxy runs out of the box!

• Simple download, setup, and install design:

% hg clone ...

% sh run.sh

• Great for development!

• Not designed to support multiple users in a production

environment with default configuration

• SQLite database

• One process

• Built-in HTTP server

• Local job execution

Development-oriented defaults

Start Fresh

• Don’t use an old Galaxy installation - check out a new copy

• Use a dedicated non-root user

• Start and stop with your OS’ system service method (e.g.

init.d, service)

• Don’t share the database or database user

• Use a dedicated Python or virtualenv

• If you plan to use a cluster, put galaxy in a shared filesystem

Galaxy Config Basics

• Use the sample config (copy before starting):

• % cp universe_wsgi.ini.sample universe_wsgi.ini

• Read the full sample config

• Set:

• use_interactive = False - Not even safe (exposes config)

• debug = False - You'll still be able to see tracebacks in the log

file, doesn't load response in memory

---- Galaxy ---

Configuration of the Galaxy application.

[app:main]

By default, Galaxy uses a SQLite database at 'database/universe.sqlite'. You

may use a SQLAlchemy connection string to specify an external database

instead. This string takes many options which are explained in detail in the

config file documentation.

#database_connection = sqlite:///./database/universe.sqlite

database_connection = postgres:///galaxy

-- Data Libraries

These library upload options are described in much more detail in the wiki:

http://wiki.g2.bx.psu.edu/Admin/Data%20Libraries/Uploading%20Library%20Files

Add an option to the library upload form which allows administrators to

upload a directory of files.

#library_import_dir = None

library_import_dir = /Users/nate/import

Galaxy Admin Interface

Galaxy Admin Interface

• Fine-grained data access permissions

Galaxy Admin Interface

• Fine-grained data access permissions

• Disk quotas and data libraries

Galaxy Admin Interface

• Fine-grained data access permissions

• Disk quotas and data libraries

• Job monitoring and management

Galaxy Admin Interface

• Fine-grained data access permissions

• Disk quotas and data libraries

• Job monitoring and management

• Install tools from the Tool Shed

Galaxy Admin Interface

• Fine-grained data access permissions

• Disk quotas and data libraries

• Job monitoring and management

• Install tools from the Tool Shed

• Core facility sample tracking

Galaxy Admin Interface

• Fine-grained data access permissions

• Disk quotas and data libraries

• Job monitoring and management

• Install tools from the Tool Shed

• Core facility sample tracking

These features are only available once you define admin_users!

A few more options

• Enable browsers like UCSC, GBrowse and Galaxy Trackster

• ucsc_display_sites, gbrowse_display_sites, enable_tracks

• “sudo” for Galaxy: allow_user_impersonation

• Publishing features: enable_pages

• Disk quotas: enable_quotas

Get a real database

• SQLite is serverless

• Galaxy is a heavy database

consumer

• Locking will be an immediate issue

• Consumes Galaxy server process

resources

• Migrating data is no fun

• Setup is very easy:
database_connection = postgres://

victory# apt-get install postgresql

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:

 libpq5 postgresql-9.1 postgresql-client-9.1 postgresql-client-common

postgresql-common

Suggested packages:

 oidentd ident-server locales-all postgresql-doc-9.1

The following NEW packages will be installed:

 libpq5 postgresql postgresql-9.1 postgresql-client-9.1 postgresql-client-

common postgresql-common

0 upgraded, 6 newly installed, 0 to remove and 0 not upgraded.

Need to get 0 B/8,951 kB of archives.

After this operation, 22.6 MB of additional disk space will be used.

Do you want to continue [Y/n]? Y

 ... magic happens ...

victory# su - postgres

postgres@victory:~$ createuser -SDR galaxy

postgres@victory:~$ createdb -O galaxy galaxy

postgres@victory:~$

Offload the menial tasks: Proxy

• Directly serve static content faster

than Galaxy's HTTP server

• Reduce load on the application

• Caching and compression

• Load balancing (more on that later)

• Hook your local authentication and

authorization system

Proxy Options

• Server

• nginx

• Designed with proxy as the primary purpose

• Has an upload module

• The proxy used for usegalaxy.org and Cloud Galaxy

• Apache

• More authentication and other 3rd party modules

Downloading data
from Galaxy

client

proxy

galaxy

disk

can client access dataset?

yes, here's the data

send me

a dataset

data

data

Downloading data
from the proxy

client

proxy

galaxy

disk

can client access dataset?

yes, here's the path

send me

a dataset

access path

data

data

Downloading data
from the proxy

• The proxy server can send files much faster than Galaxy's

internal HTTP server and file I/O methods

• Reduce load on the application, free the process

• Restartability

• Security is maintained: the proxy consults Galaxy for authZ

• Proxy server requires minimal config and then:

• nginx: nginx_x_accel_redirect_base = /_download

• Apache: apache_xsendfile = True

Uploading data
to Galaxy

data

client

proxy

galaxy

disk
upload

write data

process

file

Uploading data
to the proxy (nginx)

client

proxy

galaxy

disk
write data

done

upload

i saved a file at path

process

file

Uploading data
to the proxy

• The proxy is also better at receiving files than Galaxy

• Again, reduce load on the application, free the process

• Again, restartability

• More reliable

• Slightly more complicated to set up, and nginx only

Uploading data
from a local filesystem

• Many browsers have file size limitations

• Interrupted uploads cannot be resumed

• You may want to upload directly from a server

• Perhaps your data is already on a filesystem locally

accessible to the Galaxy server

Uploading data
from a local filesystem

• For data libraries

• For histories

Uploading data
from a local filesystem

• Non-admin users may also upload to libraries from the local

filesystem if granted permission and user_library_import_dir

is set

Uploading data
via FTP

• FTP not explicitly required, cp, scp, sftp, whatever method

your users have to place data on the server

• Full config example for ProFTPd with user authentication

against Galaxy available in Wiki

Caching data locally

• Some data (e.g. sequences and associated indexes) are

useful to many but should automatically be recognized as

available by tools

• Placing in a data library and requiring history import every

time would be a nuisance

• Avoid duplication and wasted time repeatedly building

indexes on the same sequences

• Manage locally cached data in Galaxy

Limitless tool resources:

Use a cluster (or two)

• Move intensive processing (tool

execution) to other hosts

• Utilize existing resources

• No job interruption upon restart

• Per-tool cluster options

• DRMAA supports most other DRMs

• It's easy: Set start_job_runners and

default_cluster_job_runner and go!

Per-tool Job Control

• default_cluster_job_runner = pbs:///

• fastq_groomer = pbs://othercluster.example.org/groomerq

• bowtie_wrapper = pbs:///ngsq/-l nodes=1:ppn=8/

Job users on the cluster

• By default, jobs run as the user Galaxy is started as

• If your Galaxy users and cluster system users are identical,

you may wish to run jobs on the cluster as the actual user

• Galaxy uses sudo to change ownership of relevant files and

submit the job to the cluster as the correct system user

• Configurable for your specific environment

Python and threading

• Galaxy is multi-threaded. No problem, right?

• Problem... Enter the Global Interpreter Lock

• Guido says: "run multiple processes instead of threads!"

Galaxy Process

core core core core

thread

thread

thread

thread

GIL

Opening the bottleneck

• One job manager - responsible for dispatching jobs to handlers

• Many job handlers - responsible for preparing and finishing

jobs, monitoring cluster queue(s)

• Many web servers

Process

thread

core

GIL

thread

Process

thread

core

GIL

thread

Process

thread

core

GIL

thread

Process

thread

core

GIL

thread

Defining extra servers is easy

[server:web_0]

port = 8000

[server:web_1]

port = 8001

[server:web_2]

port = 8002

...

[server:manager]

port = 8099

[server:handler0]

port = 8100

[server:handler1]

port = 8101

...

Unload the Galaxy server

• Setting metadata is CPU intensive and will make Galaxy

unresponsive

• Make a new process (better yet, run on the cluster!)

• All you need is: set_metadata_externally = True

• Run the data source tools on the cluster if they have access

to the Internet

• Remove tool = local:/// from config file

Data Management

• The Galaxy philosophy

• Data is never overwritten

• Data is never deleted

Data Management
filesystem choices

• Storage can easily be the bottleneck

• Your storage must scale with your cluster

• Transparent compression and deduplication can reduce

usage drastically

• Suggestions

• ZFS: usegalaxy.org relies on ZFS on Solaris

• ZFS on FreeBSD stable, Native ZFS on Linux coming

• Btrfs may be viable soon

Data Management
creating data

• By default, all Galaxy history and library datasets are

assigned an ID and stored in galaxy-dist/database/files/

• Single directory = single massive filesystem

• Galaxy has a dataset abstraction layer to decouple from a

single local filesystem: Object Store

• Disk backend: single filesystem

• Distributed backend: multiple filesystems

• Amazon S3 backend in development

Data Management
creating data

object_store = distributed

<?xml version="1.0"?>

<backends maxpctfull="90">

 <backend id="pool1" type="disk" weight="5">

 <files_dir path="/pool/pool1/files"/>

 <extra_dir type="temp" path="/pool/pool1/tmp"/>

 <extra_dir type="job_work" path="/pool/pool1/work"/>

 </backend>

 <backend id="pool2" type="disk" weight="1">

 <files_dir path="/pool/pool2/files"/>

 <extra_dir type="temp" path="/pool/pool2/tmp"/>

 <extra_dir type="job_work" path="/pool/pool2/work"/>

 </backend>

</backends>

Data Management
cleaning data

• Data is never removed from disk unless

• allow_user_dataset_purge = True

• users click “delete permanently”

• Solution: cleanup_datasets.py

• Run from cron to remove data from disk that has been

deleted by the user (but not “deleted permanently”)

• Configurable deletion policy allows removal after data

has been deleted for a specified number of days

Monitoring

• Monitor Galaxy

• Provided methods:

• With cron/email using galaxy-dist/cron/check_galaxy.sh

• With Nagios using galaxy-dist/contrib/nagios

• The provided scripts upload files and run jobs

Collecting Statistics

• The Galaxy Reports webapp

• Modify galaxy-dist/reports_wsgi.ini for your environment

• Start the webapp with sh run_reports.sh

Collecting Statistics

usegalaxy.org/production

The Team

