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Zero-Mode Waveguides for
Single-Molecule Analysis at High

Concentrations

M. ). Levene,’ ). Korlach,’# S. W. Turner,’* M. Foquet,’
H. G. Craighead,” W. W. Webb't

Optical approaches for observing the dynamics of single molecules have re-
quired pico- to nanomolar concentrations of fluorophore in order to isolate
individual molecules. However, many biologically relevant processes occur at
micromolar ligand concentrations, necessitating a reduction in the conventional
observation volume by three orders of magnitude. We show that arrays of
zero-mode waveguides consisting of subwavelength holes in a metal film
provide a simple and highly parallel means for studying single-molecule dy-
namics at micromolar concentrations with microsecond temporal resolution.
We present observations of DNA polymerase activity as an example of the
effectiveness of zero-mode waveguides for performing single-molecule exper-
iments at high concentrations.
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Fig. 1. An apparatus
for single-molecule en-

zymology using zero-
mode waveguides.
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Fig. 2. Principle of observing DNA synthesis inside ZMWs. (A) Template
design. The minicircle DNA template contained asingle guaninesite, allowing
incorporation of a base-linked fluorescent nucleotide, Alexa Fluor 488-dCTP.
Rolling circle, DNA strand displacement synthesis by ¢29 DNA polymerase
produced DNA with fluorescent labels at regular DNA length intervals (72
bases). (B) ZMW nanostructures were treated with PVPA, enabling selective
immobilization of DNA polymerase at the bottom of ZMWs, followed by DNA
extension reactions. The ZMW observation volume s highlighted in yellow. (C)
Fluorescent DNA products were imaged from both sides of ZMW arrays. Image
superposition and colocalization analysis was used to determine the bias of
immobilization toward the glass floor (SiO,, yellow and red dots) over the side
wall and top surfaces (Al, green dots) and to demonstrate single molecule
occupancy. The DNA length was determined by fluorescence-brightness
analysis.
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Fig. 1. Principle of single-molecule, real-time DNA sequencing. (A)
Experimental geometry. A single molecule of DNA template-bound ®29
DNA polymerase is immobilized at the bottom of a ZMW, which is illuminated
from below by laser light. The ZMW nanostructure provides excitation
confinement in the zeptoliter (107" liter) regime, enabling detection of
individual phospholinked nucleotide substrates against the bulk solution
background as they are incorporated into the DNA strand by the polymerase.
(B) Schematic event sequence of the phospholinked dNTP incorporation cycle,
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with a corresponding expected time trace of detected fluorescence intensity
from the ZMW. (1) A phospholinked nucleotide forms a cognate association
with the template in the polymerase active site, (2) causing an elevation of the
fluorescence output on the corresponding color channel. (3) Phosphodiester
bond formation liberates the dye-linker-pyrophosphate product, which
diffuses out of the ZMW, thus ending the fluorescence pulse. (4) The
polymerase translocates to the next position, and (5) the next cognate
nucleotide binds the active site beginning the subsequent pulse.

Eid et al. 2009
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Figure 1.
Principle and corresponding example of detecting DN A methylation during SMRT sequencing.

(a) Schematics of polymerase synthesis of DNA strands containing a methylated (top) or
unmethylated (bottom) adenosine. (b) Typical SMRT sequencing fluorescence traces from
these templates. Letters above the fluorescence trace pulses indicate the identity of the
nucleotide incorporated into the growing complementary strand. The dashed arrows indicate
the IPD before incorporation of the cognate T, and, for this typical example, the IPD is ~5x
larger for mA in the template compared to A.

Flushberg et al. 2010
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Types of runs

» CLR: Continuous Long Reads

» CCS: Circular Consensus Sequencing
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Figure 1 Characterization of Pacific Biosciences data. a) Base error mode rate for deletions, insertions and mismatches. b) Length distribution
of reads in the Pacific Biosciences discovery dataset (here some raw reads are as long as 5,000 bases). ¢) Pacific Biosciences error rate by position.
Shown are all errors (mismatch, insertion and deletion) by base position, including every base sequenced despite any previously known variation
(this is why the average is slightly higher than 159%). Due to the diminishing number of reads with bases beyond 1000 we only plot here
positions up to 1000. d-f) GC bias of the Pacific Biosciences instrument represented by the genomes of P. falciparum (low GQ), E. coli (average GC)
and R. sphaeroides (high GC) shows good balance in GC coverage where there is sufficient data in the genome, regardless of GC content.
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Figure 2 Error profile of Pacific Biosciences data. a) A chart showing the number of observations of the alternate allele in all heterozygous
sites and how reference bias pulls the median significantly below the expected 0.5. This combination creates multiple possible alignments with
the highest alignment score, allowing the aligner in some cases to hide the true alternate allele inside an insertion to maximize the alignment
score at the cost of reference bias. b) IGV browser (http//www.broadinstitute.org/igv/) screenshot of the validation dataset showing an example
of a case of aligner-created reference bias on Pacific Biosciences RS data. The true SNPs (C) are correctly called in individual reads. c) An IGV
browser[18,19] screen snapshot of a region in the discovery dataset where Illumina HiSeq data suffers from context specific errors that makes it
appear as a true heterozygous site whereas Pacific Biosciences RS data (with errors nearly random, though more frequent) clearly shows no

event in this region.
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Loading regimes

» Diffusion loading

» Magnetic bead loading



Modification detection
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