From the Ground to the Cloud in 25 Minutes:
Building a Customized Galaxy Analysis Server Using Only a Web Browser

Daniel Blankenberg
Postdoctoral Research Associate
The Galaxy Team | Nekrutenko Lab@Penn State
http://UseGalaxy.org
Overview

What is Galaxy?
ToolShed
Data Managers
Demo
Overview

What is Galaxy?

ToolShed

Data Managers

Demo
Galaxy Project Mission

Galaxy is an open, web-based platform for accessible, reproducible, and transparent computational biomedical research.

Accessible: Users without programming experience can easily specify parameters and run tools and workflows.

Reproducible: Galaxy captures information so that any user can repeat and understand a complete computational analysis.

Transparent: Users share and publish analyses via the web and create Pages, interactive, web-based documents that describe a complete analysis.
What is Galaxy?

A **data analysis and integration** tool

A **free (for everyone) web service** integrating a wealth of tools, compute resources, terabytes of reference data and permanent storage

Open source software that makes integrating your own tools and data and customizing for your own site simple

There are several **ways to use Galaxy**
Using Galaxy - 4 ways

• **Public Main** Galaxy web instance: usegalaxy.org

• **Local** instance: getgalaxy.org

• **Cloud** instance: usegalaxy.org/cloud

• **Other Public** Galaxy web instances hosted by various groups:
 wiki.galaxyproject.org/PublicGalaxyServers
Galaxy as a Genomics WorkBench

Dataset:
Any input, output or intermediate set of data + metadata. A record of a specific data or analysis step.

History:
A series of inputs, analysis steps, intermediate datasets, and outputs. A record of a group of data and analysis steps.

Tool:
An operation within Galaxy that acts upon dataset(s) as an analysis step. May be developed by Galaxy team or a 3rd party program that has been “wrapped” for Galaxy.

Workflow:
A series of analysis steps executed as a unit.
More Galaxy Terminology

Share:
Make something available to someone else

Publish:
Make something available to everyone

Galaxy Page:
Analysis documentation within Galaxy; easy to embed and link to any Galaxy object (histories, datasets, workflows, visualization) or external resource (video, graphics, publications).

Visualize:
Galaxy Analysis Workspace

Map with BWA for Illumina (version 1.2.3)

Will you select a reference genome from your history or use a built-in index?
- Use a built-in index

Select a reference genome:
- Human (Homo sapiens) (hg19 with mtDNA replaced with rCRS): Homo_sapiens_nuHg19_rCRS

Is this library mate-paired?
- Paired-end

Forward FASTQ file:
1. raw_child-ds-1.fq

FASTQ with either Sanger-scaled quality values (fastqsanger) or Illumina-scaled quality values (fastqillumina)

Reverse FASTQ file:
2. raw_child-ds-2.fq

FASTQ with either Sanger-scaled quality values (fastqsanger) or Illumina-scaled quality values (fastqillumina)

BWA settings to use:
- Commonly Used

For most mapping needs use Commonly Used settings. If you want full control use Full Parameter List

Suppress the header in the output SAM file:
- No

BWA produces SAM with several lines of header information

Execute

What it does

BWA is a fast light-weighted tool that aligns relatively short sequences (queries) to a sequence database (large), such as the human reference genome. It is developed by Heng Li at the Sanger Institute. Li H. and Durbin R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754–60.

Know what you are doing
Galaxy Analysis Workspace
Workflow Editor
Create Workflow Automatically

Extract Workflow from History
Create a workflow from a History that you created interactively.

Run it

Running workflow “metagenomic analysis”
Generic workflow for performing a metagenomic analysis on NGS data.

- **Step 1**: Input dataset
 - 454 Reads
 - 1: 454 reads
 - type to filter

- **Step 2**: Input dataset
 - 454 Quality Dataset
 - qualities
 - 2: 454 qualities
 - type to filter

- **Step 3**: Select high quality segments (version 1.0.0)
 Here we select segments of reads with contiguous high quality bases above threshold phred score of 20

- **Step 4**: FASTA-to-Tabular (version 1.1.0)
 Convert to tabular format so that column for additional metadata can be added

- **Step 5**: Add color

- **Step 6**: Convert

- **Step 7**: Summarize taxonomy (version 1.0.0)
 Tabulate list of taxonomic groups contained in reads from dataset 14

- **Step 8**: Draw phylogeny (version 1.0.0)
 Build and draw phylogenetic tree from reads in dataset 14

- Send results to a new history

History
- HISTORY LISTS
 - Saved Histories
 - Histories Shared with Me
- CURRENT HISTORY
 - Create New
 - Copy History
- DIFFERENCES
 - Include Deleted Datasets
 - Include Hidden Datasets
 - Unhide Hidden Datasets
- OTHER ACTIONS
 - Import from File

Histories, workflows, visualizations and pages can be shared with others or published to the world.

http://usegalaxy.org/u/aun1/p/windshield-splatter
Windshield splatter analysis with the Galaxy metagenomic pipeline: A live supplement

SERGEI KOSAKOVSKY POND1,2,*, SAMIR WADHAWAN3,6,*, FRANCESCA CHIAMONTE4, GURUPRASAD ANANDA1,3, WEN-YU CHUNG1,3,7, JAMES TAYLOR1,5, ANTON NEKRUTENKO1,3 and THE GALAXY TEAM1,*

Correspondence should be addressed to SKP, JT, or AN.

How to use this document

This document is a live copy of supplementary materials for the manuscript. It provides access to the exact analyses and workflows discussed in the paper, so you can play with them by re-running, changing parameters, or even applying them to your own data. Specifically, we provide the two histories and one workflow found below. You can view these items by clicking on their name to expand them. You can also import these items into your Galaxy workspace and start using them; click on the green plus to import an item. To import workflows you must create a Galaxy account (unless you already have one) — a hassle-free procedure where you are only asked for a username and password.

This is the Galaxy history detailing the comparison of our pipeline to MEGAN:

Galaxy History | Galaxy vs MEGAN
Comparison of Galaxy vs. MEGAN pipeline.

This is the Galaxy history showing a generic analysis of metagenomic data. (This corresponds to the "A complete metagenomic pipeline" section of the manuscript and Figure 3A):

Galaxy History | metagenomic analysis

This is the Galaxy workflow for generic analysis of metagenomic data. (This corresponds to the "A complete metagenomic pipeline" section of the manuscript and Figure 3B):

Galaxy Workflow | metagenomic analysis
Generic workflow for performing a metagenomic analysis on NGS data.

Accessing the Data

Windshield Splatter datasets analyzed in this manuscript can be accessed through this Galaxy Library. From the above page, you can also try out Galaxy using the above workflows and datasets.

http://usegalaxy.org/u/aun1/p/windshield-splatter
Overview

What is Galaxy?

ToolShed

Data Managers

Demo
Enables sharing of Galaxy Utilities:
 tools
 proprietary datatypes
 exported Galaxy workflows

Automatically install tools and tool suites, and their dependencies, into a Galaxy instance

Galaxy Utilities can be created and shared by any member of the community

https://wiki.galaxyproject.org/ToolShed
Galaxies on private clouds

Galaxies on public clouds

Galaxy Tool Shed

http://usegalaxy.org

http://usegalaxy.org/toolshed

private Galaxy installations

private Tool Sheds

1 2 3

∞
toolshed statistics

- 897 repositories
- 222 unique owners
- 176 Tool dependency package installation recipes
- 2,330 valid tools
- 3,420 valid versions of tools
- 54 exported Galaxy workflows
- 455 custom datatypes
- 62,021 total repository installations
toolshed contributions
Overview

What is Galaxy?
ToolShed
Data Managers
Demo
Figure S1. Schematic overview of reference data, location files, data tables, and tools. A Galaxy Data Manager handles downloading, creating and installing each of the required facets necessary to provide built-in reference data through the use of a web-based GUI.

Reference Genome
(*.fasta)

BWA Index Files on disk

BWA example

File listing paths, genome build, descriptions, etc. of available BWA indexes
(bwa_index.loc)

Galaxy BWA Tool
(bwa_wrapper.xml)

Tool Data Table
(tool_data_table_conf.xml)

Dynamically use built-in data in any number of Galaxy Tools

Galaxy’s built-in reference data registry

abstraction layer
Data Managers

Allows for the creation of built-in (reference) data underlying data
data tables
*loc files

Specialized Galaxy tools that can only be accessed by an admin

Defined locally or installed from ToolShed
Data Managers

Flexible Framework

not just Genomic data

Interactively Run Data Managers through UI

Workflow compatible

API

Examples:

Adding New genome builds (dbkeys)

Fetching Genome (FASTA) sequences

Building short read mapper indexes for genomes
Overview

What is Galaxy?

ToolShed

Data Managers

Demo
Demo

• **Fetch the Genome Sequence** for sacCer2
 - UCSC as the source
 - Install fetching tool from ToolShed
 - Define new Genome build / dbkey
 - all_fasta & __dbkeys__ tables are populated automatically

• **Build BWA indexes** for sacCer2
 - Install indexing tool from ToolShed
 - Build indexes
 - bwa_index table is populated automatically

• **Align some reads to the newly added reference genome**

• **Call Variants with FreeBayes**
 - Install Samtools Indexer from ToolShed
 - Build Samtools dictionary
 - Install and Run FreeBayes
Fresh Install of galaxy-dist stable within CloudMan on AWS

- **Removed** Many pre-installed tools and data
- The **sequencing reads** are a small subset from SRR507778, originally downloaded from EBI SRA.
- Already added myself as an **admin**
- Connected AWS instance to an **elastic IP** with an A record on my domain

Demo: Getting Started

- Register User and make admin

- Upload FASTQ files:
 - http://dblankenberg.org/examples/fastq/SRR507778-10k_1.fastqsanger
 - http://dblankenberg.org/examples/fastq/SRR507778-10k_2.fastqsanger

- Install and Run FastQC
Demo: Adding a new Genome Build

- Look at “Manage Local Data” in Admin interface
- Install Genome Build Data Manager
- Add a new dbkey using sacCer2 from UCSC
Demo: Mapping Reads with BWA

- **Install** BWA mapping tool and Index builder
- **Build BWA index** for sacCer2
- **Map reads** using BWA
Demo: Calling Variants with Freebayes

Freebayes requires samtools fasta index

- **Install** Samtools indexing tool
- **Build** Samtools index for sacCer2
- Install and Run Freebayes
2015 Galaxy Community Conference will be held in Norwich, United Kingdom, at The Sainsbury Lab, 6-8th July
The Galaxy Team

Enis Afgan Dannon Baker Dan Blankenberg Dave Bouvier Marten Čech John Chilton

Dave Clements Nate Coraor Carl Eberhard Jeremy Goecks Sam Guerler Jen Jackson

Ross Lazarus Anton Nekrutenko Nick Stoler James Taylor Greg Von Kuster

http://wiki.galaxyproject.org/GalaxyTeam