Using RNA-seq for gene annotation, quantitation, and functional comparison in non-model organisms

Jeremy Goecks, Anton Nekrutenko, The Galaxy Team, and James Taylor

The Question

What can I do with my Illumina RNA-seq reads from my non-model organism(s) using open source software?

The Question

GBs of short, paired-end seq reads What can I do with my Illumina RNA-seq no gene annotation, perhaps no genome reads from my non-model organism(s) freely available to all, reproducible using open source software?

http://www.fml.tuebingen.mpg.de/raetsch/members/research/transcriptomics

Current Projects

Study of organism infection

- RNA-seq data from infected, uninfected individuals
- genome but no annotations

Study of dietary adaptations

- RNA-seq data from 4 related species; single lane of Illumina 76bp paired-end reads per species
- no genome or annotations

Study of parasite venoms

- RNA-seq data from 3 related parasite venoms, two lanes of Illumina 100bp paired-end reads per venom
- no genome or annotations

Desired Outputs

For each organism

 assembled transcripts, quantitated and annotated

For pairs/groups of organisms

- *log clusters
- differential expression amongst genes and/or *logs

What is Galaxy?

Web-based GUI for genomics that requires only a Web browser for everything: analysis, workflows, sharing, publication, and visualization

A public web service (http://usegalaxy.org) integrating a wealth of tools, compute resources, terabytes of reference data and permanent storage

Open source software that makes integrating your own tools and data and customizing for your own site simple

Galaxy in a Nutshell

What you can do in Galaxy

- analysis interface, tools and datasources
- data libraries
- + workflows
- visualization
- + sharing
- + Pages

Where you can use and build Galaxy

- public website
- local instance
- + on the cloud
- tool shed/contributing tools

Preprocessing Reads in Galaxy

Quality Statistics and Box NGS TOOLBOX BETA NGS: OC and manipulation ILLUMINA DATA FASTO Groomer convert

Graph/Display Data

and graph types

columns

Histogram of a numeric column

Plotting tool for multiple series

Quartiles

Scatterplot of two numeric

Boxplot of quality statistics

- <u>FASTQ Groomer</u> convert between various FASTQ quality formats
- <u>FASTQ splitter</u> on joined paired end reads
- <u>FASTQ joiner</u> on paired end reads
- <u>FASTQ Summary Statistics</u> by column

FastQC

FastQC

FastQC

Quality Filtering

Filter FASTQ

FASTQ File:

7: FASTQ Trimmer on data 2

Requires groomed data: if your data does not appear here try using the FASTQ groomer.

Minimum Size:

Ľ	_	
L	n	
	v	

Maximum Size:

0

A maximum size less than 1 indicates no limit.

Minimum Quality:

0	\sim	
U	U.	
-	-	

Maximum Quality:

0.0

0

A maximum quality less than 1 indicates no limit.

Maximum number of bases allowed outside of quality range:

This is paired end data:

Quality Filter on a Range of Bases

Add new Quality Filter on a Range of Bases

Execute

Quality Filter on a Range of Bases

Quality Filter on a Range of Bases 1

Define Base Offsets as:

Absolute Values \$

Use Absolute for fixed length reads (Illumina, SOLiD) Use Percentage for variable length reads (Roche/454)

Offset from 5' end:

0				

Values start at 0, increasing from the left

Offset from 3' end:

Values start at 0, increasing from the right

Aggregate read score for specified range:

min score 🛟

Keep read when aggregate score is:

>= ‡

Quality Score:

0.0

0

Remove Quality Filter on a Range of Bases 1

Add new Quality Filter on a Range of Bases

Execute

Overview: Single Organism, Genome but no Annotations

Genome but no Annotations (using Galaxy)

NGS: RNA Analysis

RNA-SEQ

- <u>Tophat</u> Find splice junctions using RNA-seq data
- <u>Cufflinks</u> transcript assembly and FPKM (RPKM) estimates for RNA-Seq data
- <u>Cuffcompare</u> compare assembled transcripts to a reference annotation and track Cufflinks transcripts across multiple experiments
- <u>Cuffdiff</u> find significant changes in transcript expression, splicing, and promoter use

FILTERING

 <u>Filter Combined Transcripts</u> using tracking file

Trapnell, C., Pachter, L. and Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105-1111 (2009).
 Trapnell et al. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nature Biotechnology doi:10.1038/nbt.1621

Tophat

Will you select a reference genome from your history or use a built-in index?:
Use a built-in index \$

Built-ins were indexed using default options

Select a reference genome:

Human (Homo sapiens): hg18 Canonical

Is this library mate-paired?:

Single-end \$

RNA-Seq FASTQ file:

1: imported: h1-hESC..ple Dataset 🛟

Must have Sanger-scaled quality values with ASCII offset 33

TopHat settings to use:

Use Defaults You can use the default settings or set custom values for any of Tophat's parameters.

Execute

Cuffdiff

Transcripts: 29: Cuffcompare on da..transcripts

A transcript GTF file produced by cufflinks, cuffcompare, or other source.

Perform replicate analysis:

Perform cuffdiff with replicates in each group.

SAM or BAM file of aligned RNA-Seq reads: 11: Tophat on data 9:..cepted_hits

SAM or BAM file of aligned RNA-Seq reads:

False Discovery Rate:

0.05 The allowed false discovery rate

Min Alignment Count:

The minimum number of alignments in a locus for needed to conduct significance testing or

Perform quartile normalization:

No
Removes top 25% of genes from FPKM denominator to improve accuracy of differential expre

Perform Bias Correction:

Yes 🛟

Bias detection and correction can significantly improve accuracy of transcript abundance est

Reference sequence data:

Set Parameters for Paired-end Reads? (not recommended):

No 🛟

Execute

Cufflinks

SAM or BAM file of aligned RNA-Seq reads:

Max Intron Length: 300000

Min Isoform Fraction:

Pre MRNA Fraction:

Perform quartile normalization:

Removes top 25% of genes from FPKM denominator to improve accuracy of differential expression calls for low a

Use Reference Annotation:

Perform Bias Correction:

Yes 🗘

Bias detection and correction can significantly improve accuracy of transcript abundance estimates.

Reference sequence data:

Set Parameters for Paired-end Reads? (not recommended):

Cuffcompare

GTF file produced by Cufflinks: 21: Cufflinks on data..transcripts

Additional GTF Input Files

Additional GTF Input Files 1

GTF file produced by Cufflinks: 18: Cufflinks on data..transcripts

(Remove Additional GTF Input Files 1)

Add new Additional GTF Input Files

Use Reference Annotation:

Use Sequence Data:

Use sequence data for some optional classification

Choose the source for the reference list:

Execute

20

Quantitation

Read to transcript mapping difficult because read can map to multiple transcripts

FPKM = fragments per kilobase of exon per millions of reads

normalize by exon length and sample size

1 FPKM ~ 1 transcript per cell in mouse

Quantitation and Differential Expression

- -> C fi 🕓 main.g2.bx.psu.edu

× +

Galaxy

- Galaxy

. . .

Analyze Data Workflow Shared Data Visualization Admin Help Use

tracking_id	class_code nearest_ref_id g	e_id gene_short_name tss_id locu	us length coverage	status	q1_PPKM q1_con	f_10 q	1_conf_hi	q2_FPKM q2_conf_lo	q2_conf_hi
TCONS 00000001	XLOC 000001 -	 chr11:133735175-133 	735361 186 -	- OK	8142.9 0	20053.7 4	474.38 0	11703	
TCONS 00000002	o NM 001194 XLOC 0000	NM 001194 TSS1 chr	19:531860-541886	1112 -	OK nan	0 n	an nan	0 nan	
TCONS 00000003	0 NM 001194 XLOC 0000	NM 001194 7551 chr	19:531860-541886	1116 -	OK nan	0	an nan	0 nan	
TCONS 00000004	x NM 005035 XLOC 0000	NM 005035 7663 chr	19:572537-583491	1650 -	PAIL 0	0 0	nan	0 nan	
700NE 0000005	× NM 005035 ¥LOC 0000	NM 005035 7563 ohr	10.572537-593491	1654	PATE 0	0 0	0.00	0 000	
700%5 00000005	 NM 001040134 XLOC 0000 	NN 001040134	10.601603_603150	475	08 240 54	0 0 5	80 307 672 002	0 1600 51	
TCONS_0000000	e NA_001040134 ALOC_0000	SA_ODIO40134 - Chr.	191001003-002130	973 -	08 240.34		69.391 612.991	0 1000.51	
TCONS_0000007	XLOC_000006 -	T554 Chr191/2/023-/31220	322 -	OK 1450.31	0 3472.1		0		
700NS_00000008	XLOC_000007 -	TSS5 Chr191/35956-740458	231 -	487.708	0 1181.4	10 0	U		
TCONS_0000009	XFOC_000008 -	TSS6 chr19:783179-785122	459 - 0	OK 221.808	0 543.43	30 0	0	2011 C	
TCONS_00000010	o NM_001928 XLOC_0000	NM_001928 TSS7 chr.	19:797406-812366	3305 -	PAIL 0	0 0	0	0 0	
TCONS_00000011	e NM_001972 XLOC_0000	NM_001972 - chr	19:797406-812366	171 =	PAIL 0	0 0	178.62	0 506.607	
TCONS_00000012	XLOC_000009 -	 chr19:797406-812366 	409 - 1	FAIL 0	0 0	39457.3 2	378.03 76536.5		
TCONS 00000013	o NM 001928 XLOC 0000	NM 001928 - chr	19:812949-813258	309 -	OK 1250.8	6 0 2	959.41 0	0 0	
TCONS 00000014	- XLOC 000010 -	TSS8 chr19:860913-867823	745 - 4	OK 171.777	0 429.18	6 87.8122 0	249.425		
TCONS 00000015	XLOC 000010 -	 chr19:860913-867823 	439 - 4	OK 504.984	0 1203.9	123.554 0	349.431		
TCONS 00000016	0 NM 138690 XLOC 0000	NM 138690 75510 chr	19:932490-971944	1047 -	OK nan	0 n	an nan	0 nan	
70018 00000017	0 NM 138690 YLOC 0000	NM 139690 75610 chr	19,932490-971944	1079	08 030	0	40 040	0 000	
70000 00000019	- NH 010113	NN 010112 20010 011	10.00/100 00/01/	1483	DATE O		un nun	C nan	
70085 00000018	0 NM_019112 AD0C_0000	NA_019112 TSB12 Chr.	191964330-994324	1483 -	PALL 0		04076 7	Tan and tanks of	
TCONS_0000019	6 NH_012292 XLOC_0000	NR_012292 T5513 Chr.	19:1026593-1039065	941 -	FAIL 0	0 0	20376.7	733.016 40019.5	
TCONS_00000020	o NM_012292 XLOC_0000	NM_012292 TSS13 chr.	19:1026593-1039065	2163 -	PAIL 0	0 0	nan	0 nan	
TCONS_00000021	o NM_012292 XLOC_0000	NM_012292 - chr	19:1026593-1039065	259 -	FAIL 0	0 0	8770.53	0 19819.6	
TCONS_00000022	e NM_012292 XLOC_0000	NM_012292 - chr:	19:1026593-1039065	280 -	PAIL 0	0 0	497.775	0 1261.4	
TCONS_0000023	x NM_002695 XLOC_0000	NM_002695 TSS17 chr:	19:1042075-1043800	686 =	OK 189.92	4 0 4	74.007 169.841	0 437.158	
TCONS 00000024	x NM 002695 XLOC 0000	NM 002695 75517 chr	19:1042075-1043800	691 -	OK 92.922	5 0 2	51.555 213.744	0 \$37.177	
TCONS 00000025	x NM 002695 XLOC 0000	NM 002695 TSS18 chr	19:1042075-1043800	579 -	OK 342.83	2 0 8	27.993 37.2074	0 105.934	
TCONS 00000027	XLOC 000017 -	TSS20 chr19:1050958-10540	64 620 -	OK 442.107	0 1049.4	2 136,17 0	338,512		
TCONS 00000028	- XLOC 000017 -	TSS21 chr19:1050958-10540	64 315 - 0	OK 679.659	0 1621.2	7 445,941 0	1111.04		
70015 0000030	0 NM 001039848 XLOC 0000	NM 001039848 75623 chr	19:1056073-1056456	297	08 334.04	4.0 8	40.68 264.54	0 706.481	
TCONE 0000031	× NH 001100122 XLOC 0000	NW 001100133 //0036 chr	10.1050670-1050005	124	08 1066 0	5 0 A	041 07 1606 05	0 3057 47	
10048 00000031	- NH 001100122 ALOC 0000	NH 001100122 10025 CHL	1911030079-1050005	493	08 2316 1	5 6 6	103 34 006 301	0 0100 55	
100NS_00000032	x NN_001100122 XLOC_0000.	NA_OUIIOOI22 TSS2/ Chr.	19:1064990-1065509		08 2213.3		103.74 070.201	0 2120.55	
TCONS_00000033	x NM_001100122 XLOC_0000.	NR_001100122 T5529 Chr.	19:106/336-10/4/23	1109 -	OK nan	o n	an nan	o nan	
TCONS_00000034	x NM_001100122 XLOC_0000	NM_001100122 TSB30 chr	19:1067336=1074723	765 -	OK 1813.5	20 4	158,93 3727.42	0 7926.98	
TCONS_0000035	XLOC_000024 -	TSS31 chr19:1074797-10829	36 916 - 0	OK nan	0 nan	nan 0	nen		
TCONS_00000036	1 NM_014963 XLOC_0000	NM_014963 TSS32 chr:	19:1074797-1082936	464 -	OK 863.28	70 2	049.43 1128.66	0 2673.69	
TCONS_00000037	i NM_014963 %LOC_0000	NM_014963 TSS34 chr:	19:1082990-1086597	286 -	FAIL 0	0 0	0	0 0	
TCONS_00000038	i NM_014963 XLOC_0000	NM_014963 75535 chr	19:1082990-1086597	1050 -	FAIL 0	0 0	0	0 0	
TCONS 00000039	i NM 014963 XLOC 0000	NM 014963 - chr:	19:1082990-1086597	948 -	FAIL 0	0 0	0	0 0	
TCONS 00000040	x NM 014963 XLOC 0000	NM 014963 TSS36 chr	19:1104001-1106745	894 -	OK nan	0 n	an nan	0 nan	
TCONS 00000041	x NM 014963 XLOC 0000	NM 014963 75537 chr	19:1104001-1106745	189 -	OK 4297.2	8 0 1	0297.2 3281.36	0 7773.26	
TCONS 00000042	O NR 023312 XLOC 0000	NR 023312 76639 chr	19-1206374-1220506	1137 -	08 040	0	an nan	0	
TCONS 00000043	0 NR 023312 XLOC 0000	NR 023312 75540 chr	19:1220567-1227635	- 022	PATL 0	0 0	1200.49	0 2848.08	
TCONS 0000044	0 NM 017914 TLOC 0000	NW 017914 75540 chr	19-1220567-1227635	768	PATT 0	0 0	89 8201	0 243 688	
20082 0000044	 NR 033310 NR 033310 NLOC 0000 	ND 033312	10.1000557 1007635	227	DATE O		4010 2	0 0530 07	
TCOAS_0000045	e ak_023312 ALOC_0000.	NR_023312 - Chr.	1911220367-1227635		FAIL 0		4010.2	9330.07	
TCONS_0000046	C NR_023312 XLOC_0000	NR_023312 - Chr.	1911220567-1227635	1108 -	FAIL 0	0 0	nan	0 nan	
TCONS_0000047	e NR_023312 XLOC_0000	NR_023312 - chr.	19:1220567-1227635	435 -	PAIL 0	0 0	289.05	0 715.339	
TCONS_0000048	e NM_017914 XLOC_0000	NM_017914 - chr	19:1227903-1228515	612 -	OK 203.13	3 0 4	83.744 413.155	0 1000.25	
TCONS_00000049	1 NM_001405 XLOC_0000	NM_001405 TSS42 chr:	19:1241801-1244814	628 -	OK 425.35	90 1	014.39 0	0 0	
TCONS_00000050	o NM_001405 XLOC_0000	NM_001405 TSS43 chr	19:1250355-1254081	453 -	OK 610.51	2 0 1	457.01 114.849	0 323.665	
TCONS 00000051	- XLOC 000029 -	 chr19:1250355-125400 	81 471 - 0	OK 564.127	0 1351.7	5 297.756 0	753.12		
TCONS 00000052	- XLOC 000030 -	TSS45 chr19:1254176-12572	85 1026 - 0	OK nan	0 nan	nan 0	nan		
TCONS 00000053	XLOC 000030 -	TS\$45 chr19:1254176-125721	85 1023 -	OK nan	0 nan	nan 0	nan		
TCONS 00000054	- XLOC 000031 -	TSS46 chr19:1269125-12748	07 578 -	PATE 0	0 0	0 0	0		
TCONS DODDODES	- XLOC 000031	T\$\$46 chr19:1269125-12740	07 517 -	PATE 0	0 0	0 0	0		
1000HE 00000055	×100 000031	20040 abold.1360135_13346	07 1667	DATE O	0 0	0 0	0		
20010 0000056		20040 che10.1260125-12740	07 1670	DATE O	0		0		
TCONS_00000057	XLOC_000031 -	T5549 Chr19:1269125-12748	0/ 10/9 - 1	FAIL 0	0 0	0 0	0		
TCONS_0000060	- XLOC_000032 -	T8852 chr19:1275597-12791	16 690 - 0	OK 2628.87	5873.2	6 4294.15 0	9493.66		
TCONS_0000061	XLOC_000033 -	TSS54 chr19:1356344-13607	18 477 - 1	PAIL 0	0 0	38.2618 0	110.037		
000000 00000000	110 110 11 FLOO 0000	NH 136313 36655 about	10.130/344 13/0310	1617	ILATE O			0	

Quantitation and Differential Expression

tracking_1d	Class_	code nea:	rest_ref_	1d gene_1d	gene_sho	ort_name	p tss_10	1 locus	lengt	h covers	ge	status	Q1_PPKM	q1_conf	10	q1_conf.	hì	QZ_FPKM	q2_conf_lo	q2_cont_hi
TCONS_00000001	- 0.07	- XLO	C_000001		-	chr11:	13373517	5-133735	361	186	-	OK	8142.9	0	20053.7	4474.38	0	11703		
TCONS_00000002	0	NM_001194	XLOC	000003	NM_00119	94	TSS1	chr19	531860-	541886	1112	-	OK	nan	0	nan	nan	0	nan	
TCONS_00000003	0	NM 001194	XLOC.	000003	NM_00115	9-6	TSS1	chr19:	531860-	541886	1116	-	OK	nan	0	nan	nan	0	nan	
TCONS 00000004	x	NM 005035	XLOC	000004	NM 00503	35	TSS3	chr19:	572537-	583491	1650	-	PAIL	0	0	0	nan	0	nan	
TCONS_00000005	×	NM_005035	XLOC	000004	NM_00503	35	TSS3	chr19:	572537-	583491	1654	-	PAIL	0	0	0	nan	0	nan	
TCONS 00000006	•	NM 001040134	XLOC	000005	NM 00104	40134	-	chr19:	681683-	682158	475	-	OK	240.569	0	589.397	672.907	0	1600.51	
TCONS_00000007	-	- XLO	000006	-	TSS4	chr19:	27023-7	31220	322	-	OK	1450.31	0	3472.77	0	0	0			
TCONS_0000008	-	- XLOO	000007	-	T885	chr19:	135954-7	40458	231	-	OK	487.708	0	1181.41	0	0	0			
TCONS_0000009	-	- XLO	000008	-	TSS6	chr19:	183179-7	85122	459	-	OK	221.808	0	543.433	0	0	0			
TCONS 00000010	0	NM 001928	XLOC	000009	NM 00192	28	TSS7	chr19:	797406-	812366	3305	-	PAIL	0	0	0	0	0	0	
TCONS_00000011	e	NM_001972	XLOC	000009	NM_00197	72	-	chr19:	797406-	812366	171	-	PAIL	0	0	0	178.62	0	506.607	
TCONS 00000012	-	- XLO	000009	-	-	chr19:	797406-8	112366	409	-	FAIL	0	0	0	39457.3	2378.03	76536.5			
TCONS 00000013	0	NM_001928	XLOC	000009	NM_00192	28	-	chr19:	812949-	813258	309	-	OK	1250.86	0	2959.41	0	0	0	
200NE 0000014	62236	VI.O/	010000			abr 19.	60912-9	67973	745		OF	171 777	0	420 106	07 0177		240 475	16.20	52	

Filtering

Filter for differentially expressed elements

Filter combined transcripts for those that are differentially expressed

Filter
Filter:
130: Cuffcompare on datranscripts
Dataset missing? See TIP below.
With following condition:
c14=='yes'
Double equal signs, ==, must be used

Overview: de novo

De Novo Assembly

Assemble reads by looking for overlap amongst reads and contigs

k = starting overlap between reads

Highly resource intensive

- lots of memory and multiple cores required
- difficult to do with desktop computer

Wrappers coming to Galaxy soon

De Novo RNA-seq Assemblers

	Trans-ABySS	Trinity
basic idea	combine multiple DNA assemblies	single assembly oriented toward RNA
runtime (24 cores)	7-9 days	1-2 days
disk space required	huge	small
scaffolding via PE reads	yes	no
strand-specific	no	yes

Robertson et al. (2010). "De novo assembly and analysis of RNA-seq data." Nature Methods 7(11): 909-912. Grabherr et al. (2011). "Full-length transcriptome assembly from RNA-Seq data without a reference genome." Nat Biotechnol.

De Novo RNA-seq Assemblers

	Trans-ABySS	Trinity
basic idea	combine multiple DNA assemblies	single assembly oriented toward RNA
runtime (24 cores)	7-9 days	1-2 days
disk space required	huge	small
scaffolding via PE reads	yes	no
strand-specific	no	yes

Robertson et al. (2010). "De novo assembly and analysis of RNA-seq data." Nature Methods 7(11): 909-912. Grabherr et al. (2011). "Full-length transcriptome assembly from RNA-Seq data without a reference genome." Nat Biotechnol.

De Novo RNA-seq Assemblers

	Trans-ABySS	Trinity
basic idea	combine multiple DNA assemblies	single assembly oriented toward RNA
runtime (24 cores)	7-9 days	1-2 days
disk space required	huge	small
scaffolding via PE reads	yes	no
strand-specific	no	yes

Robertson et al. (2010). "De novo assembly and analysis of RNA-seq data." Nature Methods 7(11): 909-912. Grabherr et al. (2011). "Full-length transcriptome assembly from RNA-Seq data without a reference genome." Nat Biotechnol.

>comp17428_c0_seq1_FPKM_all:10.443_FPKM_rel:10.443_len:198_path:[0] AGAAAACTTTTTTTTGGTAAAAACAAAACAATTTTCTATTTTTGCAGTAAAATTTACGAAT CATAATTTTGGGGGGAAAATTTTTGATATTAATGTAAACTTGTCATAAGAGGGGGAAAATTG TGATACATTTTCCGCCATCTTGTGGGACAAGCAGAAAGTATTATTTGACATTTCGTAAAT TTTACTGTGCGGCTTGTT

>comp17416_c0_seq1_FPKM_all:13.273_FPKM_rel:13.273_len:642_path:[0] TCCTGACAAACAACGCCCCCTGCTTCGTTTGGCGAACGTTTTGGTACAACTTTAACTCCA CAATCCGCAGATCTTGATAAACAAAATCCAAGAAAAATAGGATCAGCAATTTTAACAAGA ATATTGTCTACTGAAAATACATGTACACTATTTATTCCGCGCTTCTTCATATTATCCAAT ACGCCTTGGATTTTTAATGCACGATAAAGTCCTCCATTTCCATCTGGTGCTTTTGATATG TGACATTTTTCATCCAATATTATTTTTACCATCAAAAGTAAAACAGGGGTAGCATCTCTTGT TTAAATGCTTTTATATTTTCTTTCTTTAATCCAAAAGTAAAACAGGGGTAGCATCTCTTGT TTGAATTGTTCGTGAGTTGCTTCACTTGTCATAATATACCATGTAATATGACCATGTTTT TTGAATTTTTCTTCAGCAAGTTCTTGTAGTTTACGAATTCTTAAAGCTTGCAAACGAAAT AGAGTGCTGTGTGAAGGAAGTCCAACATCATACATTCCCTTGGGATAATTTACACCAAGT CGAGTACCTTGACCTCCAGCCAATAAAAGTATAGCGACTCGACCATCGGAAATTTCCTTT

Evaluating Assemblies

Expectations

80% reassembly = success

Statistics

hgʻ

n	n:100	n:N50	min	median	mean	N50	max	sum
650976	64671	6276	100	198	618	1744	17063	4.00E+07

Transcript length distribution

0	mean	stdev	0%	25%	50%	75%	100%
	1722	1352	30	832	1497	2208	81928

兽 🔮 🌒 🧮 Galaxy Accessible Workflow 🛪	+		
← → C n Smain.g2.bx.psu.edu/u/	jeremy/w/genemrna-length-statistics		む く
T Galaxy	Analyze Data Workflow Shared Data Visualization Admin Help User		
Accessible Workflow Gene/mRNA length statistics			
Galaxy Workflow ' Gene/mRNA length statistic	's'	Author	1
Step	Annotation	jeremy	10
Step 1: Input dataset	Requirements: (a) one record per coding element; (b) element names have form [parent_name]]delimiter][element_name]	Related Workflows	1
BED file of coding elements select at runtime		All published workflows Published workflows by jeremy	
Step 2: Convert	Separate parent name and element name. Typically choose '.' for gene	Rating	
Convert all	annotation files and '_' for mRNA annotation files.	Community (0 ratings, 0.0 average)	*****
in Query		Yours	$(a,a) \in (a,a)$
Output dataset 'output' from step 1		Tags	
Step 3: Compute	Compute length of each element.	Community: none	
Add expression c3-c2		Yours:	
as a new column to			
Round result?			
Step 4: Group	Create table of parent element lengths. For gene datasets, typically want to sum on column 8, for mRNA datasets, typically want to column 13		
Select data Output dataset 'out_file1' from step 3	sum on column a, for move datasets, typicary want to sum on column 23.		
Group by column 4 (value not yet validated)			
Ignore case while grouping? False			
Operations			
Operation 1			
Sum			
On column			
Round result to nearest integer? NO			
Step 5: Summary Statistics	Compute statistics across all parent elements,		
Summary statistics on Output dataset 'out_file1' from step 4			
Column or expression			

Sequence Annotation de novo

- 1. If necessary, extract genomic DNA
 - using GFF/features!

2. Annotation via HMMScan

- PFAM database
- http://hmmer.janelia.org/

				<u>A</u>
€⇒Cπ <u>©</u>	nmmer.janella.org/results/score/11529264-B180-11E0-95F6-9859998A/913/ptam=1		_	12
	Fram Domains			
	Show hit details			
	_ Distribution of Significant Hits @			
	Bacteria Eukaryota Archaea Viruses Unclassified Sequences Other Sequences E	irst « Previous Page)	1 of 31 No	xt » Last »
Query Matches (30)	26)			Customize
Target	Description	Species	E-value	Show Alignment
A2RQD6_HUMAN	Bcr-abl1 e6a2 chimeric protein (Fragment) (gene: BCR-ABL1)	Homo sapiens	9.0e-107	show
ABL_FSVHY@	Tyrosine-protein kinase transforming protein Abl (gene: ABL)	Feline sarcoma virus (strain Hardy- Zuckerman 2)	2.2e-106	show
A2RQD7_HUMAN@	Bcr-abl1 e19a2 chimeric protein (Fragment) (gene: BCR-ABL1 e19a2)	Homo sapiens#	2.5e-106	show
A2AV22_MOUSE	V-abl Abelson murine leukemia oncogene 1 (gene: Abl1)	Mus musculus 🗗	2.6e-106	show
Q3SYK5_MOUSE	Abl1 protein (gene: Abl1)	Mus musculus 🗗	2.6e-106	show
D3ZGM3_RAT	Uncharacterized protein (gene: Abl1)	Rattus norvegicus 🛱	2.7e-106	show
Q2PYT4_RATE	ABL1 (Fragment) (gene: Abl1)	Rattus norvegicus @	2.7e-106	show
ABL1_HUMANE	Tyrosine-protein kinase ABL1 (gene: ABL1)	Homo sapienst?	2.7e-106	show
D2H177_AILMELS	Putative uncharacterized protein (Fragment) (gene: PANDA_003253)	melanoleucat	2.86-106	snow
OS9EK4 HUMANI	V-abl Abelson murine leukemia viral oncorene homolog 1 isoform b variant (Fragment)	Homo sapiens	2.8e-106	show
Q4SJH9_TETNG	Chromosome 4 SCAF14575, whole genome shotgun sequence. (Fragment) (gene: GSTENG00017201001)	Tetraodon nigroviridis 🗗	3.7e-106	show
A9UF02_HUMAN	BCR/ABL fusion protein isoform X9 (gene: BCR/ABL fusion)	Homo sapienst?	4.5e-106	show
A9UF07_HUMANE	BCR/ABL fusion protein isoform Y5 (gene: BCR/ABL fusion)	Homo sapiens	5.0e-106	show
Q2PYT3_RATE?	ABL1 (Fragment) (gene: Abl1)	Rattus norvegicus 🗗	1.7e-105	show
BOUXN6_DANRE	Novel protein similar to vertebrate Abelson murine leukemia viral oncogene homolog 2 (Arg, Abelson-related gene) (ABL2) (gene: abl2)	Danio rerio 🗗	1.9e-94	show
BOUXN7_DANRE	Novel protein similar to vertebrate Abelson murine leukemia viral oncogene homolog 2 (Arg, Abelson-related gene) (ABL2) (gene: abl2)	Danio rerio 🗐	5.3e-94	show
Q4RUE3_TETNG	Chromosome 1 SCAF14995, whole genome shotgun sequence. (Fragment) (gene: GSTENG00028837001)	Tetraodon nigroviridis 🗗	5.4e-94	show
Q6P282_XENLA®	MGC69056 protein (gene: abl2)	Xenopus laevis@	6.4e-94	show
D6RBS4_HUMAN	Uncharacterized protein (gene: ABL2)	Homo sapiens	1.0e-93	show
D6RIE2_HUMANE	Uncharacterized protein (gene: ABL2)	Homo sapiens	1.1e-93	show
B5MEB6_HUMAN	Uncharacterized protein (gene: ABL2)	Homo sapienst	1.3e-93	show
ABL2 HUMANIC	ADIZ ISOTOTTI IBLUIS	Homo sapiens®	2.08-93	show
BTUEFS HUMANIA	Abi2 isoform 18C/TS	Homo sapiensia	3.10-02	show
DTUETS HUMANIS	Auto London Alegore	Home capience	3.10-93	show

*log Clustering de novo

(Quasi-)Reciprocal BLA(s)T

- find best matches between two sets of transcripts
- repeat for more species

LastZ

- designed for long reads/contigs
- high-quality mapping amongst *log clusters

Quantitation de novo

Read to transcript mapping difficult because read can map to multiple transcripts

FPKM = fragments per kilobase of exon per millions of reads

normalize by exon length and sample size

1 FPKM ~ 1 transcript per cell in mouse

RSEM de novo

Expectation-maximization model

Uses TPM, not FPKM

 when mean transcript length is 1k, 1 TPM=1 FPKM

Be consistent

Li, B., V. Ruotti, et al. (2010). "RNA-Seq gene expression estimation with read mapping uncertainty." Bioinformatics 26(4): 493-500.

k71 : 94571	34285.52	0.00129541301452086	k71 : 94571
k70 : 110756u	34714.33	0.00147532810537204	k70 : 110756u
k72 : 79128u	35163.91	0.00139980345826473	k72 : 79128u
k71 : 95729u	36039.45	0.00164266197886051	k71 : 95729u
k73 : 62819u	36888.41	0.0018459751145641	k73 : 62819u
k73 : 62364u	37274.56	0.00180992945323558	k73 : 62364u
k73 : 63082u	37919.99	0.00136337550194011	k73 : 63082u
k72:78714	38233.64	0.00237886076778222	k72 : 78714
k73 : 62636	38362.56	0.000375271843972168	k73 : 62636
k71 : 95841	39041.42	0.00189572242891473	k71 : 95841
k73 : 63028u	39759.97	0.0015827631212604	k73 : 63028u
k72:78108	40155.68	0.00184053788631075	k72 : 78108
k71:93994	40967.55	0.00177806349073446	k71 : 93994
k74 : 38786u	44067.87	0.00220525090976878	k74 : 38786u
k72:78714	38233.64	0.00237886076778222	k72 : 78714
k73 : 62636	38362.56	0.000375271843972168	k73 : 62636
k71 : 95841	39041.42	0.00189572242891473	k71 : 95841
k73 : 63028u	39759.97	0.0015827631212604	k73 : 63028u
k72:78108	40155.68	0.00184053788631075	k72:78108
k71:93994	40967.55	0.00177806349073446	k71:93994

Differential Expression de novo

Simple: combine results from *log clustering and quantitation

Summary

For each organism

assembled transcripts, quantitated and annotated

For pairs/groups of organisms

- *log clusters
- differential expression amongst genes and/or *logs

Enis Afgan

Dave Clements

Kanwei Li

Dannon Baker

Jeremy Goecks

James Taylor

Jennifer Jackson

Kelly Vincent

Nate Coraor

Greg von Kuster

Anton Nekrutenko

Supported by the **NHGRI** (HG005542, HG004909, HG005133), **NSF** (DBI-0850103), Penn State University, Emory University, and the Pennsylvania Department of Public Health

Thanks! Questions?

Slides: <u>http://dl.dropbox.com/u/4745528/goecks_rnaseq_workshop_2011.pdf</u>

Galaxy

- public server: http://usegalaxy.org
- download: http://getgalaxy.org

jeremy.goecks@emory.edu

