Globus Genomics Tutorial – GlobusWorld 2014
• Overview of Globus Genomics

• Example Collaborations

• Demonstration
 – Globus Genomics interface
 – Globus Online integration
 – Scenario 1: Using Globus Genomics for Bioinformatics Core
 – Scenario 2: Using Globus Genomics for Individual Research labs

• Hands-On Experience
What Is Globus Genomics?

- Flexible, powerful SaaS-based genomics analysis platform
- Workflows can be easily defined and automated with integrated Galaxy capabilities
- Data movement is streamlined with integrated Globus file-transfer functionality
- Resources can be provisioned on-demand with Amazon Web Services cloud based infrastructure
Challenges in Sequencing Analysis

Data Movement and Access Challenges

- Data is distributed in different locations
- Research labs need access to the data for analysis
- Be able to Share data with other researchers/collaborators
 - Inefficient ways of data movement
- Data needs to be available on the local and Distributed Compute Resources
 - Local Clusters, Cloud, Grid

Once we have the Sequence Data

- Manually move the data to the Compute node
- Install all the tools required for the Analysis
 - BWA, Picard, GATK, Filtering Scripts, etc.
- Shell scripts to sequentially execute the tools
- Manually modify the scripts for any change
 - Error Prone, difficult to keep track, messy..
- Difficult to maintain and transfer the knowledge
Globus Genomics

Globus Provides a file transfer Service between all data-endpoints

- High-performance
- Fault tolerant
- Secure

Data Management

Galaxy Based Workflow Management System

- Globus Integrated within Galaxy
- Web-based UI
- Drag-Drop workflow creations
- Easily modify Workflows with new tools

- Analytical tools are automatically run on the scalable compute resources when possible

Data Analysis

www.globus.org/genomics
Globus integrated with Galaxy – A flexible, scalable, simplified analysis platform

Accessibility
• Unified Web-interface for obtaining genomic data and applying computational tools to analyze the data
• Easily integrate your own tools and scripts for analysis
• Collection of tools (Tools Panel) that reflect good practices and community insights
• Access every step of analysis and intermediate results:
 ▪ View, Download, Visualize, Reuse (History Panel)

Reproducibility
• Track provenance and ensure repeatability of each analysis step:
 ▪ input datasets, tools used, parameter values, and output datasets
• Intuitive Workflow Editor to create or modify complex workflows and use them as templates – Reusable and Reproducible

Transparency
• Publish and share metadata, histories, and workflows at multiple levels
• Store public and generated datasets as Data Libraries – e.g: hg19 Ref Genome
• Shared datasets and workflows can be imported by other users for reuse

Globus Integration
• Access Globus Endpoints and transfer data from within Galaxy UI and into Galaxy workspace
• Leverage local cluster or cloud based scalable computational resources for parallelizing the tools
Additional Capabilities

- Professionally managed and supported platform
- Best practice pipelines
 - Whole Genome, Exome, RNA-Seq, ChIP-Seq, …
- Enhanced workbench with breadth of analytic tools
- Technical support and bioinformatics consulting
- Access to pre-integrated end-points for reliable and high-performance data transfer (e.g. Broad Institute, Perkin Elmer, university sequencing centers, etc.)
Example Collaborations

Dobyns Lab

Background: Investigate the nature and causes of a wide range of human developmental brain disorders

Approach: Replaced manual analysis with Globus Genomics

Results: Achieved greater than 20X speed-up in analysis of exome data

Future Plans: Leverage scale-out capability of Globus Genomics on 150 exome data set and seek to achieve 50X speed-up in analysis
Example Collaborations

Georgetown Medical Center

Background: Innovation Center for Biomedical Informatics is an academic hub for innovative research in the field of biomedical informatics.

Approach: Augment current team and tools with a NGS analysis platform to support standard and best-practice pipelines while leveraging elastic cloud-based resources.

Results: Pilot effort is complete – significantly improved performance results on whole genome, exome and RNA-Seq pipelines utilizing Globus Genomics

Future Plans: Provide Globus Genomics as a well-managed platform-as-a-service for ICBI collaborators and users
Diversity of Collaborations

- Dobyns Lab – Seattle Children’s Hospital
- Cox Lab – University of Chicago
- ICBI / Georgetown University
- Kansas University Medical Center
- Volchenboum Lab – University of Chicago
- Olopade Lab – University of Chicago
- Inova Translational Medicine Institute
- Becton Dickinson
- Perkin Elmer
- Nagarajan Lab – Washington University St. Louis
- Genome Sciences Institute – Boston University
- Cedars-Sinai Medical Center – Los Angeles
- University of California – Irvine
- University of California – San Francisco
- University of Pittsburgh Medical Center
- Poroyko Lab – University of Chicago
- The Ohio State University Wexner Medical Center
- Broad Institute
- Many others…
DEMO

• Overview of the Globus Genomics interface
 – Interface (Tools, Histories)
 – Sharing Histories and Workflows

• Globus Integration in Galaxy
 – Globus interface
 – Globus transfers within Galaxy
 – View/Track Transfers
Use Case: Running workflows with all the tools and parameters predefined.

- Introduction to Exome seq pipeline
 - Import the best practices workflow
 - Scientific pipeline details
- Running a pre-defined exome seq pipeline with Globus transfers with one Sample
 - Submit a workflow
- Batch Submission with multiple-samples
Globus Genomics Demonstration
Scenario 1
Scenario 2 – Individual Researchers

Use Case: Running individual tools and creating/modifying workflows and the parameters

• Running individual tools
 – E.g: FastQC and Flagstat

• Importing a workflow

• Modifying the tools in the workflow
 – E.g: Change the aligner, Add/Remove Data transfer

• Modify the parameters of the tools
Globus Genomics Demonstration
Scenario 2
Hands-On Exercise

1. Register with www.globus.org
2. Join the “Globus Genomics Workshop” group at https://www.globus.org/Groups
3. Login to http://demo.globusgenomics.org

4. Browse and Get Data from “SequencingCenter” endpoint
 Endpoint Name: sulakhe#SequencingCenter
 Username/Passwd: genomics/globus
 Input files: Exome-Sample_Forward_1.fastq.gz
 Exome-Sample_Reverse_2.fastq.gz

5. Change datatype of the input files to “fastqsanger” (click on the pencil sign)

6. Import a workflow from Shared Data
 Name: ExomeSeq-Analysis-no-transfer_short_version

7. Run the workflow