Statistical analysis of genome-scale data

Geir Kjetil Sandve, the HyperBrowser team, University of Oslo

The way we do this

- "Try out yourself" means try out yourself
 - No use in me demonstrating one step at a time
 - I provide the key terms you sort out the clicking
 - If you're stuck ask us or neighbor
 - I will anyway demo each task afterwards
- And science is more than clicking, anyway
 - We will focus just as much on the underlying concepts

Outline of session

- Analyzing genomic tracks
- The gospel: powerful analyses through simple means
- The cautionary tale: challenges with data and assumptions
- Conclusion

Outline of session

- Analyzing genomic tracks
- The gospel: powerful analyses through simple means
- The cautionary tale: challenges with data and assumptions
- Conclusion

What are genes?

This! :

What are genes?

Reference genome acts like coordinate system for genomic data

chr21 10079666 10120808 NM_001187 chr21 13332357 13412442 NR_026916 chr21 13700575 13700652 NR_036164 chr21 13904368 13935777 NM_174981 chr21 14137324 14142556 NR_026755

Classic examples of genomic track data

- Gene locations, gene expression
- Evolutionary conserved regions
- Repeating elements

ENCODE, FANTOM, GEO, Roadmap Epigenomics ..

- By now, Big Science provides:
 - Chromatin accessibility (DHSs) for ~350 cell samples
 - Binding of ~100 TFs in several cell types
 - Most histone modifications in several cell types
 - Gene expression for thousands of setups
 - TSS and active promoters in ~950 cell samples
 - DNA methylation, 3D genome structure, ...

Delineating basic types of genomic tracks

And what about analysis?

Example analyses

- A relation between methylation patterns and repeating elements? (Genome Res. 2009 19: 221-233)
- Distinct methylation for tissue-specific genes?(Genome Res. 2010 20: 1493-1502)
- Cooperative histone modifications? (Nat Genet 2008 40:897-903)

Example analyses (cont.)

- Fragile sites, breakpoints and repeats? (Genome Biology 2006 7:R115)
- Copy number variation, repeats, duplications and genes? (Genome Res. 2009 19: 1682-1690)
- Methylation and active genes at T-Cell G0 >GI (Genome Res. 2009 19: 1325-1337)

Example analyses (cont.)

- Virus integration vs genes, CpG, GC-content (Journal of Virology 2007 6731–6741)
- Methylation patterns in embryonic cells (PNAS 2010 107:10783–10790)

Example analyses (cont.)

- 80.4% of the genome participates in at least one biochemical/chromatin-associated event (Nature 2012, 489:57)
- Motifless TF ChIP-seq peaks vs high TRF occupancy (HOT) (Genome Biol 2012, 13:R48)
- [Almost every ENCODE article has many examples, really]

This can't be it?!

Co-location of genomic features

- Common question: do genomic feature X and Y occur (more than expected) at the same locations in the genome?
- Used to discover novel relations
- May indicate a direct causal relation, or hint to indirect association.

How does this look at the drawing board?

overlap > expected?

How does this look at the drawing board?

overlap > expected?

- Issues in practice:
 - How to represent data (easy)
 - How to count overlap (easy)
 - How to conclude on relation or not (challenging)

Outline of session

- Analyzing genomic tracks
- The gospel: powerful analyses through simple means
- The cautionary tale: challenges with data and assumptions
- Conclusion

Technical note (I): Wifi access

- Network name (ssid): **conferences**
- Password (WPA2): uio202aar

Technical note (2): Server load

- We will today be 40 people running on a 32-CPU server
 - Might be some queueing of runs or slow GUI
 - Might be some DB operational errors (just refresh..)
 - [we are in transition to a larger server]

B-cells important for multiple sclerosis?

- "Results suggest an important role of B cells in the pathology of MS"
- "MS associated genomic regions co-localized with regions which are functionally active in B cells"
- "MS SNPs including 0.25cM flanks overlap more than expected with regions of chromatin state AP in gm12878"

Getting to know MS

Go to HyperBrowser:

"hyperbrowser.uio.no"

Import MS from published Page:

• "Training material"

Expand history element, and:

• "Perform HyperBrowser analysis"

Keep defaults, and "Start analysis"

Do MS overlap unexpectedly with AP regions in gm12878?

Select tool: "Analyze genomic tracks" Genome: "hg18" (!) TrackI: "--From history..--" -> MS Track2: "Chromatin / Chromatin state../ .. Gm12878.. / 1 Active Promoter" Analysis: "Overlap?"

Keep defaults and "Start analysis"

But, something isn't right!

- Unexpected overlap between MS and B-cell AP does not confirm a role of B-cells in MS!
 - (why not?)
- Restrict to AP regions specific to B-cell
 - "Subtract" intervals of other cell from B-cell
 - But still not right! (and why not?)
- Must instead use a case-control analysis..

Track customized for analysis: Create B-cell AP vs hepatocyte AP

Menu "HyperBrowser track repository":

- "Extract track from HyperBrowser repository"
- "hg18"
- 1. "Chromatin / Chromatin state../..Gm12878../.. AP
- 2. "Chromatin / Chromatin state../..Hepg2../.. AP

Menu "Customize tracks":

 "Combine two BED files into single casecontrol track" Do MS overlap preferentially with B-cell AP vs hepatocyte AP?

Tool: "Analyze genomic tracks"

Senome: hg18,TrackI: мs

• shortcut: "perform HyperBrowser analysis"

Track2: Customized case-control track

Question: "Preferential overlap?"

Keep defaults and "Start analysis"

Outline of session

- Analyzing genomic tracks
- The gospel: powerful analyses through simple means
- The cautionary tale: challenges with data and assumptions
- Conclusion

A second case: Do HPVs integrate preferentially inside genes?

Do HPV and genes overlap?

Import HPV from (the same) published Page:

• "Training material"

"Analyze genomic tracks", "hg19" (!)

• (*shortcut*: "perform HyperBrowser analysis")

TrackI: "--From history..--" -> HPV

Track2: Find genes in track collection ...

"Located inside?", "Start analysis"

How does this look at the drawing board?

overlap > expected?

How does this look at the drawing board?

inside > outside ?

LGP	Р	Colocalized in 3D?
VP (cat)	VS (cat)	Category pairs differentially co-located?
VS (c/c)	S	Preferential overlap?
P	VS (c/c)	Located in case segments
VP	VP	Nearby values similar?
S	VP	Higher values inside segments?
P	VS	Located in segments with high values?
S	F	Higher values inside?
P	F	Higher values at locations?
F	F	Correlated?
S	S	Located nearby?
S	S	Overlap?
S	S	Similar segments?
P	S	Located nearby?
P	S	Located nonuniformly inside?
P	S	Located inside?
P	P	Located nearby?
Ρ	Ρ	Different frequencies?

Making justified choices is indeed hard!

- The choice of data may influence results
 - Both source and exact version of genes might matter
 - Can sometimes justify, e.g. based on sensitivity/ specificity trade-off
 - Should ideally show how results vary with choice of data
 - Should at least be very precise in what was done (accessibility, transparency, reproducibility)

Making justified choices is indeed hard (2)

- There is usually more than one possible test for a given biological question
 - The choice has to be made, and can't be resolved automatically
 - Statistical and biological implications play together to determine what may be reasonable
 - Should at least expose the different possibilities

Hypothesis testing

- Alternative hypothesis (HI)
 - What you really want to show (more HPV in genes)
- Null hypothesis (H0)
 - A neutral baseline (HPV equally inside/outside)
- P-value
 - How likely is observation (or more extreme), given H0
 - Observation unlikely -> reject H0, left with H1

Hypothesis testing: the challenges

- Alternative hypothesis (HI)
 - What you really want to show (more HPV in genes)
- Null hypothesis (H0) Mathematically imprecise?
 - A neutral baseline (HPV equally inside/outside)
- P-value

How to

compute

• How likely is observation (or more extreme), given H0

Observation unlikely -> reject H0, left with H1

Or maybe unlikely for other reason?

Is it easy

define?

How to compute p-value?

- Look at normal distribution table? Run a t-test?
 - But where to put in HPV and genes?

The quest for a distribution

- Can we find a suited distribution? (for number of HPV sites inside genes under H0)
 - Statistician may find that "yes: a binomial distribution"
 - Would you be comfortable assuming a binomial distribution? Or better: Would you have any clue on the implications?

The quest for a distribution

- The implication of using a binomial distribution
 - What is binomially distributed HPV or genes?
 - Neither..This only applies to the measure.
 - Instead, HPV assumed independently and uniformly distributed
 - Not trivial to see, and if found: is this acceptable?

HPV integration sites

How to compute p-value?

- Look at normal distribution table? Run a t-test?
 - But where to put in HPV and genes?
- Turns out that thinking about standard tests and distributions becomes awkward
 - Instead, do it the modern way..

Meet Monte Carlo

- Null model:
 - How to randomize data (precise rendition of H0)
 - Where could HPV be located under H0..
- Test-statistic:
 - How to measure aspect of interest
 - Number of HPV sites located inside genes
- P-value:
 - How often is *test-statistic* from *null model* more extreme than for observation?
 - How often are 78 or more random HPV inside genes?

 Randomize point (HPV) locations (null model)

- Randomize point (HPV) locations (null model)
- Count random points (HPV) inside segments (genes) - test statistic

- Randomize point (HPV) locations (null model)
- Count random points (HPV) inside segments (genes) - test statistic
- Repeat a number of times

- Randomize point (HPV) locations (null model)
- Count random points (HPV) inside segments (genes) - test statistic
- Repeat a number of times
- Build histogram

- Randomize point (HPV) locations (null model)
- Count random points (HPV) inside segments (genes) - test statistic
- Repeat a number of times
- Build histogram
- Compare with number of observed points (HPV) inside segments (genes)

- Randomize point (HPV) locations (null model)
- Count random points (HPV) inside segments (genes) - test statistic
- Repeat a number of times
- Build histogram
- Compare with number of observed points (HPV) inside segments (genes)
- p-value = area to the right if HI is more (if less, area to the left)

p-value = 0.08

- Didn't like implications of binomial distribution?
- With Monte Carlo, you can shuffle how you like
 - Throw HPV around uniformly and independently (like binomial)
 - Keep clustering tendency of HPV (shuffle HPV spacings)
 - Keep HPV as is, only shuffle genes (in various ways)

Exploring alternative data and assumptions

Try different gene data sources and assumptions (null models) on HPV-gene relation

Use back button or redo functionality (

Who get's the best p-value;)

Data and assumptions matter!

- HPV inside Ensembl genes? (default assumptions)
 - Yes! (p-value=0.006)
- HPV inside Refseq genes? (default assumptions)
 - No! (*p*-value=0.5)
- Inside Ensembl (v2)? (Preserve inter-HPV distances)
 - Still yes (p-value=0.005)
- Inside Ensembl (v3)? (Randomize genes)
 - Maybe.. (p-value=0.02)

An example of alternative assumptions

- Duan, [...] and Noble (Nature, 2011):
 - Extensive significant 3D co-localization of functional elements, assessed by hypergeometric distribution
- Witten and Noble (NAR, 2012):
 - Hypergeometric test had unrealistic implications. Telomeres and breakpoints may not be co-located after all.. (cancelled 4 of 11 findings)

Other important issues

- <u>Selecting appropriate test statistic</u>
- Handling confounders

Conclusion

- Genomic tracks provide a powerful, generic basis for statistical analysis
- Sophisticated statistical testing can be performed through simple means (web GUI)
- The devil may be in the details, and selection of data and assumptions can't be outsourced

Further into statistical details: the test-statistic

- Maybe viruses integrate close, rather than inside?
 - Let's instead analyze distance to TSS!

HPV close to genes?

- Same data as for last analysis!
 - Use redo only slight changes are needed..
- Question: "Located nearby?"
- Options looks okay !?
- "Start analysis"

Back to drawing board: the test-statistic

- For "located inside":
 - Could simply count the number of HPV sites falling inside genes

Back to drawing board: Must quantify "close"

But that's trivial, sure: Just count bp distance!?

• But which distances - not all vs all?!

- But which distances not all vs all?!
 - Only shortest!

- But which distances not all vs all?!
 - Only shortest! From I to 2!

- But which distances not all vs all?!
 - Only shortest! From I to 2! But MC needs a single number..

- But which distances not all vs all?!
 - Only shortest! From I to 2! But MC needs a single number..
 - Just use sum/average of distances!?

- Two scenarios with same (arithmetic) average..
 - Scenario A indicates relation, but not B !?
 - If so, can be captured by instead using geometric average

You try!

- Can you find a significant HPV-gene relation?
- Would you be comfortable reporting (publishing) this relation?
- If so, what would be an acceptable way to report it?

Any rules of thumb? (for the statistical testing)

- Maybe:
 - Use test-statistic that gives best (lowest) p-value
 - Use null model that gives worst (highest) p-value
- Reasoning:
 - Use measure that best catches relation of interest
 - Use the most realistic model of nature (null model)

Conclusion

- Genomic tracks provide a powerful, generic basis for statistical analysis
- Sophisticated statistical testing can be performed through simple means (web GUI)
- The devil may be in the details, and selection of data and assumptions can't be outsourced

Handling confounders

- Exons are associated with heightened DNA melting temperature
 - But both exons and DNA melting are also directly associated with GC content
 - Are exon regions really associated mechanistically with DNA melting, beyond the relation through a common association with GC?
- Analyzing exon-melting while <u>controlling for</u> <u>confounders</u>

Controlling for confounders

• <u>Tutorial 5</u> of "Analyze genomic tracks"

Conclusion

- Genomic tracks provide a powerful, generic basis for statistical analysis
- Sophisticated statistical testing can be performed through simple means (web GUI)
- The devil may be in the details, and selection of data and assumptions can't be outsourced