

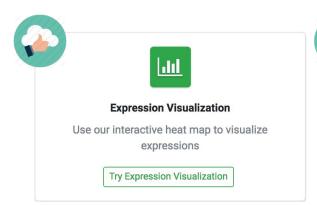
Home Trees ▼ Genomic Data ▼ Tools ▼ About Contact

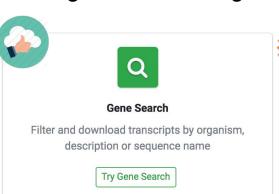
Comparative Genomics of Environmental Stress Responses in North American Hardwoods

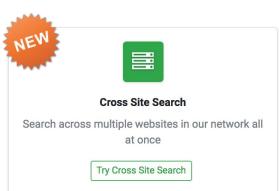
- Started in 2011
- Housing genetic and genomic resources for hardwood tree species
- Increasingly devastating forest threats: diseases, invasive pests and climate change

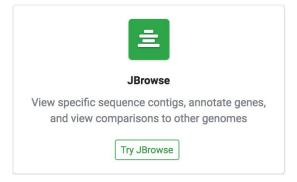
Expanding HWG database

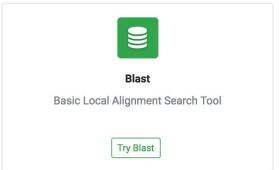
- New data and new interfaces
 - Controlled vocabularies
 - Genetic markers and maps, phenotype data
 - Search and expression visualization interfaces
- Tripal improvement
 - Tripal gateway
 - Cross site communication

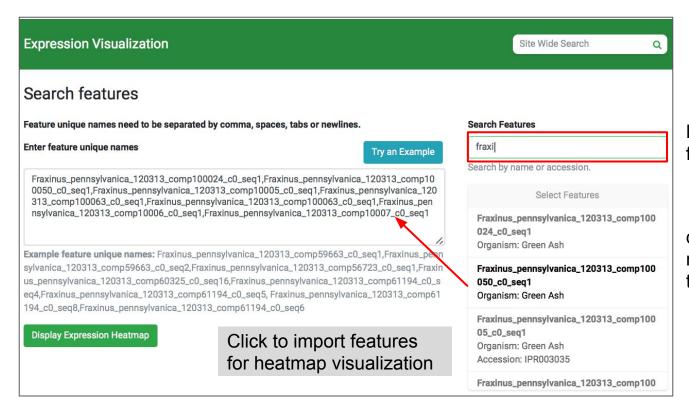

Genetic and genomic resources in HWG

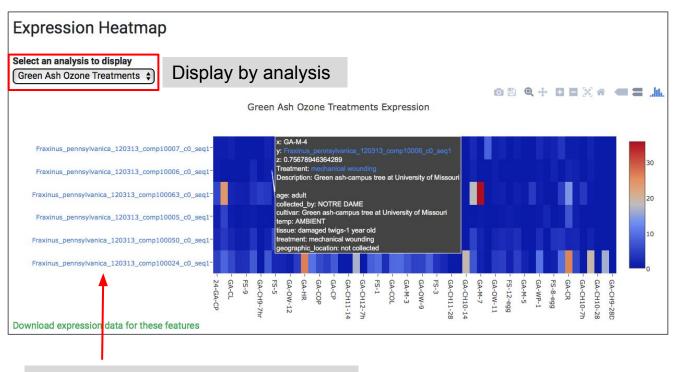

	Resources					
Species	low coverage genome sequence	transcriptome sequence	SSRs	Reference Populations		
American Beech		$\overline{\mathbf{v}}$				
American Chestnut		$\overline{\mathbf{V}}$				
American Sweetgum		$\overline{\mathbf{V}}$	$\overline{\mathbf{V}}$	~		
Black Cherry	▼		$\overline{\mathbf{V}}$			
Black Walnut	▼	$\overline{\mathbf{V}}$		$\overline{\mathbf{v}}$		
Blackgum	$\overline{\checkmark}$	$\overline{\checkmark}$	V			
Chinese Chestnut						
Dogwood		$\overline{\mathbf{V}}$				
European Chestnut		$\overline{\mathbf{V}}$				
Green Ash	▽	▽	V			
Honeylocust	▽	$\overline{\mathbf{V}}$	$\overline{\mathbf{V}}$	~		
Hydrangea		$\overline{\mathbf{V}}$				
Japanse Chestnut		$\overline{\mathbf{V}}$				
Northern Red Oak		▽		~		
Red Alder		$\overline{\mathbf{V}}$				
Redbay	▽		$\overline{\mathbf{V}}$			
Sugar Maple	▽	$\overline{\mathbf{V}}$	V			
Tulip Poplar				~		
White Alder		~				
White Ash	V		~			
White Oak	V	$\overline{\mathbf{V}}$	V			

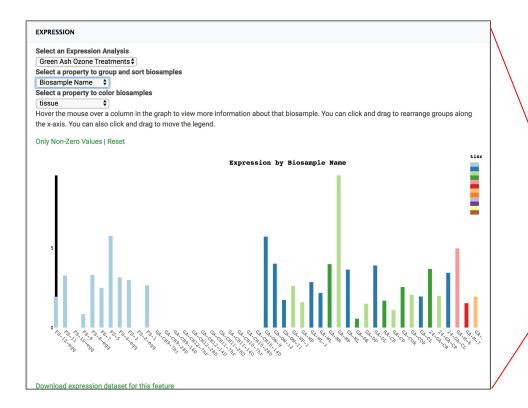

Reference Genomes

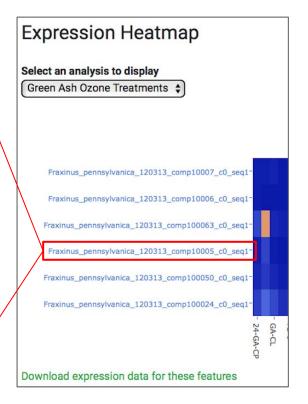

- Chinese Chestnut
- English Walnut
- European Ash
- Valley Oak

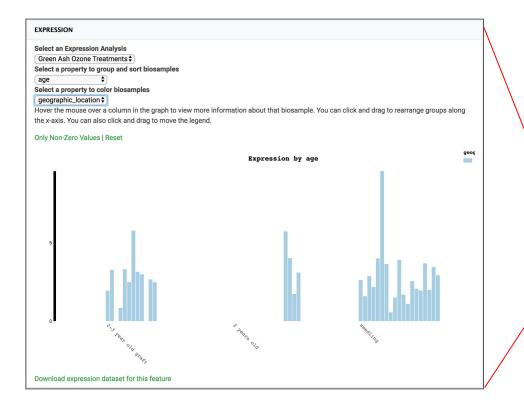

Tools available for accessing and visualizing database resources

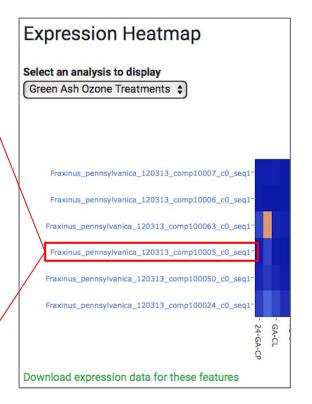





More powerful feature search


display search results as typing




Link to individual feature visualization

Tripal Elasticsearch: quick and easy access to data

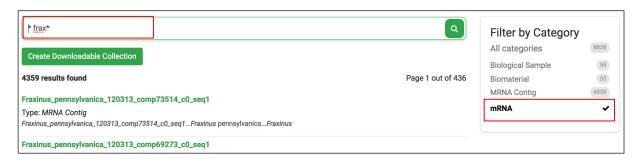
Site Wide Search

elastic **Q**

Tripal Elasticsearch: quick and easy access to data

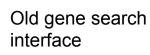
Site wide search (Advanced search)

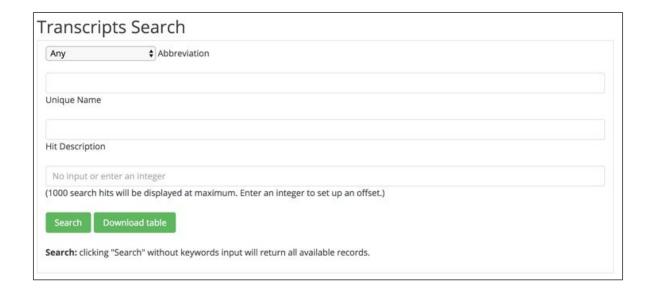
- Wildcard search with * . Examples:
 - genom* sequence -> genome , genomic , genomics ...
 - Lir*dron tulipifera -> Liriodendron tulipifera
- Fuzzy search: When you don't know how to exactly spell your keywords, you use fuzzy search. fuzzy search allows you to search for similar words. You use the ~ at the end of your keyword for fuzzy search (keyword~). Examples:
 - sequeeence~ -> sequence
 - Alnus rhmifolia~ -> Alnus rhombifolia
- AND, OR, NOT operator and combination search. Examples:
 - "heat stress" AND ("Castanea mollissima" OR "green ash") NOT "heat shock"


First time using HWG, don't know what's available.

Use a simple wildcard to display all.

Filter by category

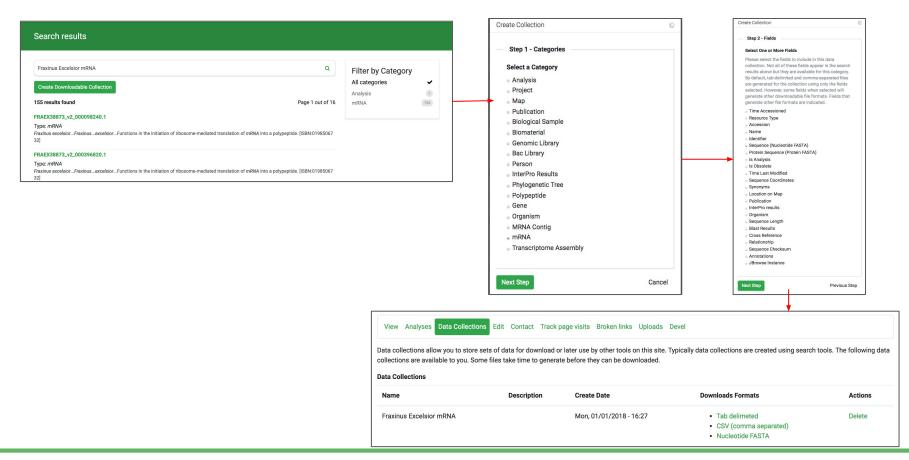


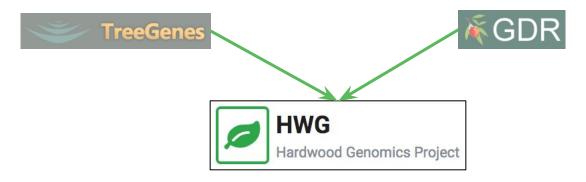


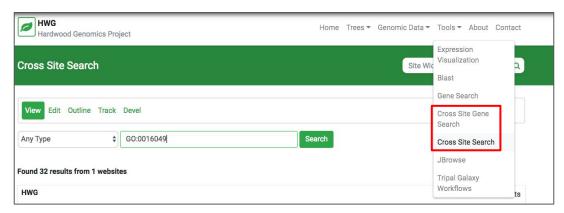
Only interested in green ash! But don't know how to spell its scientific name.

Wildcard again! Easy!

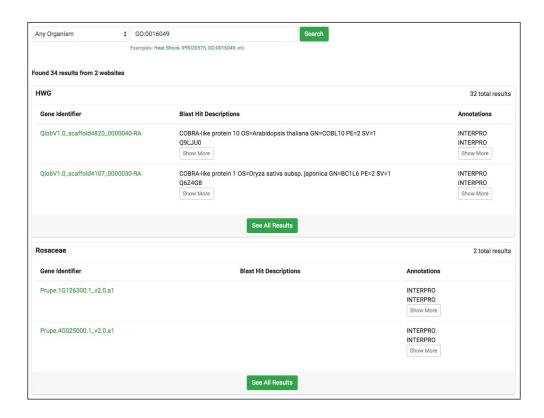
Gene search




Any Organism	E,g. Kinase or IPR020405	Search
	Examples: Heat Shock, IPR020575, G0:0016049, etc.	


New: simplified search interface, improved "download" functionality

Download data with data collections



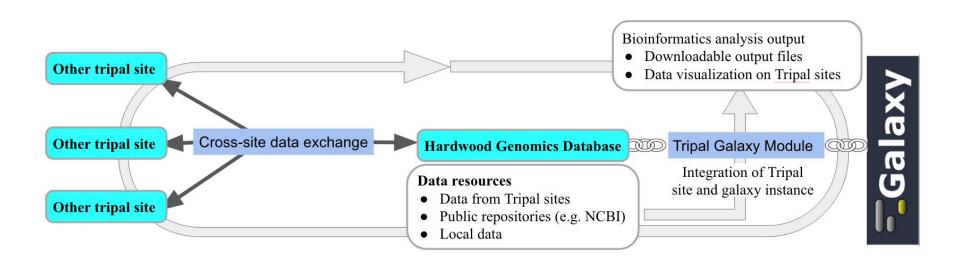
Cross site search

Cross site search

Want to know more about Tripal Elasticsearch?

Tripal Elasticsearch: Bringing Simple and Powerful Sitewide Search to Tripal Websites

Abdullah Almsaeed


Abdullah Almsaeed

Sunday, January 14, 2018 05:12 PM - 05:30 PM California room

Bradford Condon

Tripal gateway: bridge from Tripal to Galaxy

Tripal gateway: bridge from Tripal to Galaxy

Mapping/alignment

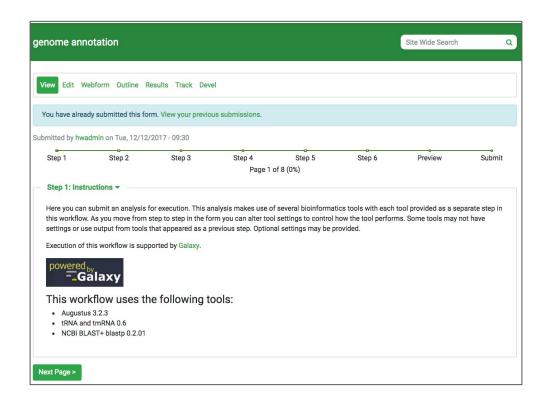
- · DNA sequences mapping/alignment
 - bowtie2 alignment (paired end)
 - bowtie2 alignment (single end)
- RNA sequences mapping/alignment
 - hisat2 alignment (paired end)
 - hisat2 alignment (single end)
 - · hisat2 alignment with BDSS integrated

Transcripts assembly

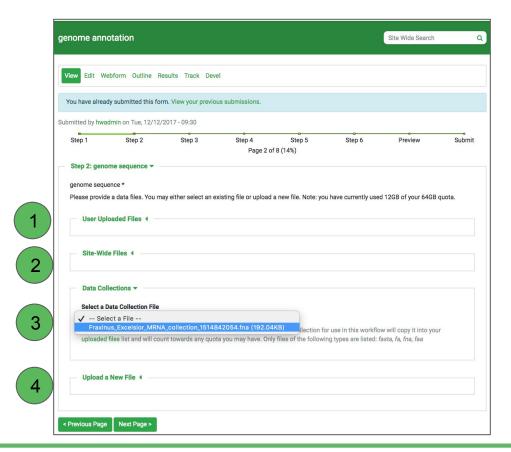
- · Transcripts assembly (paired end)
- · Transcripts assembly (single end)

Genome annotation

Genome annotation


Expression analysis

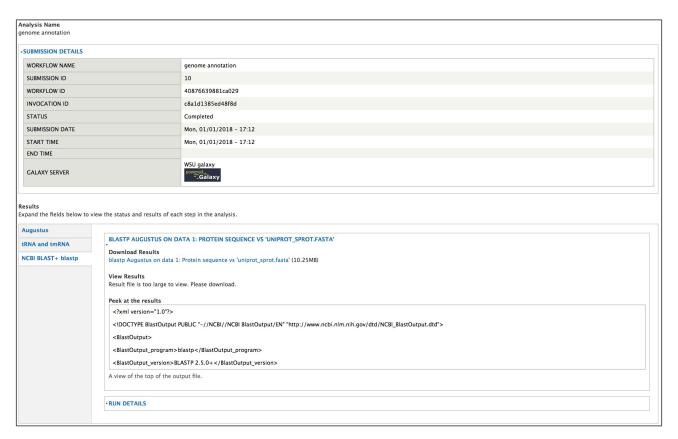
- · Differential expression analysis (DESeq2)
- Weighted Gene Co-Expression Analysis (WGCNA)


Variant analysis

Variant analysis

Running a Galaxy workflow

Running a Galaxy workflow



Workflow status

ID	WORKFLOW	GALAXY SERVER	USER	SUBMISSION TIME	START TIME	END TIME	STATUS	RESULTS
29	bowtie2-alignment (single end)	WSU galaxy	hwadmin	01/04/2018 - 14:21	01/04/2018 - 14:22			View
28		WSU galaxy	Anonymous (not verified)	01/04/2018 - 14:16			Waiting	View
27	bowtie2-alignment (paired end)	WSU galaxy	hwadmin	01/04/2018 - 13:48	01/04/2018 - 13:49		Completed	View
26	variant analysis	WSU galaxy	hwadmin	01/04/2018 - 11:44	01/04/2018 - 11:48		Completed	View
25	transcripts-assembly (paired end)	WSU galaxy	hwadmin	01/04/2018 - 11:19			Error	View
24	wgcna analysis	WSU galaxy	hwadmin	01/04/2018 - 11:05	01/04/2018 - 11:07		Completed	View
23	differential expression analysis (DESeq2)	WSU galaxy	hwadmin	01/04/2018 - 10:55	01/04/2018 - 11:07		Completed	View
22	hisat2-alignment (single end)	WSU galaxy	hwadmin	01/04/2018 - 10:45	01/04/2018 - 10:55		Completed	View
21	hisat2-alignment (paired end)	WSU galaxy	hwadmin	01/04/2018 - 10:34	01/04/2018 - 10:35			View
20	hisat2-alignment (paired end)	WSU galaxy	hwadmin	01/04/2018 - 10:29	01/04/2018 - 10:35		Completed	View

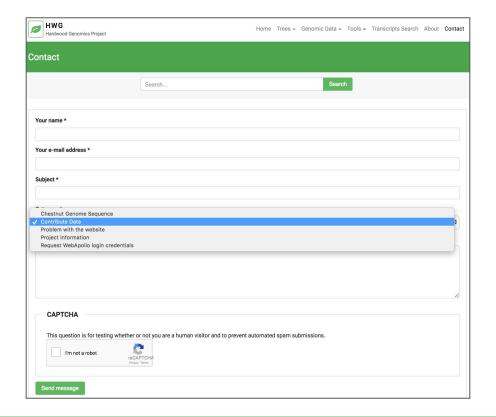
1 2 next > last »

Results

Want to know more about Tripal Galaxy?

Building a Bridge from the Tripal Community Database to Galaxy

Margaret Staton


Tuesday, January 16, 2018 05:50 PM - 06:10 PM California room

Summary

- New data
 - Genetic markers and maps
 - phenotype data
- Improved user experience
 - Gene search
 - Site wide search
 - Data collection to download search results
 - Cross-site search
 - Gene expression visualization
- Tripal Gateway
 - Collect data from HWG
 - Run Galaxy workflows from HWG

Interested in adding your data to HWG? Contact us!

Acknowledgements

Meg Staton, PI

- Abdullah Almsaeed
- Bradford Condon
- Ming Chen

Stephen Ficklin, Pl

- Connor WytkoBrian SotoDorrie Main, PI
- Chunhuai Cheng
- Heidi hough

Lacey-Anne Sanderson

Jill Wegrzyn, PI

Herndon Sean Buehler

Tripal Community

Penn State University

John Carlson, PI

Teodora Best, Research Associate Nicole Zembower, Technician Di Wu, PhD Student

Nick Wheeler, Manager

University of Notre Dame

Jeanne Romero-Severson, Co-Pl Dan Borkowski, PhD Student Arpita Konar, PhD Student

Andrea Noakes, PhD Student Lauren Fiedler, Technician Olivia Choudhary

Michigan Tech University Oliver Gailing, Co-PI

Sandra Owusu, PhD Student Sudhir Khodwekar, PhD Student

University Tennessee Scott Schlarbaum, Co-PI

Ami Sharp, Research Associate Jason Hogan, Research Associate James Simons, Research Associate

Margaret Staton, Bioinformatics, Jack Davitt, Research Associate Nathan Henry, Research Associate Thomas Lane, Research Associate

University of Missouri Mark Coggeshall, Co-PI

Christopher Heim, MS student

Clemson University

Haiying Liang, Co-PI Chris Saski, Director of CUGI

Tatyana Zhebentyayev, Research Associate

Ketia Shumaker, Co-PI