
Dynamic Job Expansion: 
Experiences using Makeflow in Galaxy

Nicholas Hazekamp, Joseph Sarro, Olivia Choudhury, 
Sandra Gesing, Scott Emrich and Douglas Thain

Galaxy Dev Meeting



The Cooperative Computing Lab

• We collaborate with people who have large scale computing problems in science, engineering, 
and other fields.

• We operate computer systems on the O(10,000) cores: clusters, clouds, grids.

• We conduct computer science research in the context of real people and problems.

• We develop open source software for large scale distributed computing.



Our Philosophy:

• Harness all the resources that are available: desktops, clusters, clouds, and grids.

• Make it easy to scale up from one desktop to national scale infrastructure.

• Provide familiar interfaces that make it easy to connect existing apps together.

• Allow portability across operating systems, storage systems, middleware…
• Make simple things easy, and complex things possible.

• No special privileges required.



A Quick Tour of the CCTools

• Open source, GNU General Public License.

• Compiles in 1-2 minutes, installs in $HOME.

• Runs on Linux, Solaris, MacOS, Cygwin, FreeBSD, …
• Interoperates with many distributed computing systems.

– Condor, SGE, SLURM, TORQUE, Globus, iRODS, Hadoop…
• Components:

– Makeflow – A portable workflow manager.
– Work Queue – A lightweight distributed execution system.
– All-Pairs / Wavefront / SAND – Specialized execution engines.
– Parrot – A personal user-level virtual file system.
– Chirp – A user-level distributed filesystem.



Lots of Documentation



Makeflow:
A Portable Workflow System



An Old Idea: Makefiles

part1 part2 part3: input.data split.py
     ./split.py input.data

out1: part1 mysim.exe
    ./mysim.exe part1 >out1

out2: part2 mysim.exe
    ./mysim.exe part2 >out2

out3: part3 mysim.exe
    ./mysim.exe part3 >out3

result: out1 out2 out3 join.py
    ./join.py out1 out2 out3 > result 



Makeflow = Make + Workflow

• Provides portability across batch systems.

• Enable parallelism (but not too much!)

• Trickle out work to batch system.

• Fault tolerance at multiple scales.

• Data and resource management.

Makeflow

Local SLURM TORQUE Work
Queue



out.txt : in.dat

  sim.exe –p 50 in.data > out.txt

Not quite right!out.txt : in.dat calib.dat sim.exe

  sim.exe –p 50 in.data > out.txt

Makeflow Syntax

[output files] : [input files]

[command to run]

sim.exe

in.dat

calib.dat
out.txt

sim.exe in.dat –p 50 > out.txt

One rule



Makeflow + Work Queue



Private
Cluster

Campus
Condor

Pool

Public
Cloud

Provider

XSEDE
Torque
Cluster

Makefile

Makeflow

Local Files and Programs

Makeflow + Batch System

makeflow –T torque

makeflow –T condor

???

???



XSEDE
Torque
Cluster

Campus
Condor

Pool

Public
Cloud

Provider

Private
Cluster

Makefile

Makeflow

Local Files and Programs

Makeflow + Work Queue

W

W

W

ss
h

WW

WW

torque_submit_workers 

W

W

W

condor_submit_workers 

W

W

W

Thousands of 
Workers in a

Personal Cloud

submit
tasks



Advantages of Work Queue

• Harness multiple resources simultaneously.

• Pilot jobs (Work Queue workers) hold on to cluster nodes to execute multiple tasks rapidly.

• Scale resources up and down as needed.

• Better management of data, with local caching for data intensive tasks.

• Matching of tasks to nodes with data.



Dynamic Job Expansion



Simple Workflow in Galaxy

Problem: As Size increases so does Time



Workflow with Parallelism added in Galaxy

Problem: Tools must be updated every change 
in Parallelism/Relies on Scientist



Workflow Dynamically Expanded behind Galaxy



User-System Interaction



User-System Interaction



Managing Environmental Expectations



Query: 600MB Ref: 36MB

Small Scale Run



Time (HH:MM)

Query: 32GB Ref: 36MB

Full Scale Run



Performance in Real-Life

• 100+ Different runs through Workflow

• Utilizing 500+ Cores with heavy load

• Data sets ranging from >1GB to 50GB+



Real Usage Concurrency Comparison



Conclusions

• Using Dynamic Job Expansion we were able to scale up a workflow 
without requiring the huge amount of time to process.

• Found viable solutions for:
• Using Work Queue we utilized 100s of cores from a Condor Pool
• Cleaning Sandbox using knowledge of intermediates and logging
• Explored methods to transmit needed environments such as executables and 

Java

• 61.5X speed-up on 32 GB dataset utilizing these methods



Visit our website: ccl.cse.nd.edu

Follow us on Twitter: @ProfThain

Check out our blog: cclnd.blogspot.com



Join us at the

Cooperating Computing Lab

Workshop on Scalable Computing

October 19th-20th

For details visit: ccl.cse.nd.edu/workshop/2016/

http://ccl.cse.nd.edu/workshop/2016/

