
Python Wheels in Galaxy

The wheels on the Galaxy go round and round

February 18, 2016 GalaxyAdmins Meetup
Nate Coraor

https://docs.galaxyproject.org/en/release_16.01/admin/framework_dependencies.html

https://docs.galaxyproject.org/en/release_16.01/admin/framework_dependencies.html
https://docs.galaxyproject.org/en/release_16.01/admin/framework_dependencies.html

Overview

● A history lesson
● Wheels
● What has changed?
● Nitty gritty stuff
● Future plans

A history lesson: Galaxy dependency management

Most Python projects use requirements.txt and pip to manage dependencies,
most of which are compiled at first run. Galaxy’s approach has always been heavier:

● The Galaxy framework’s dependency list is long and building the list is slow
● Many include C extensions and some are not easy to compile
● Some require non-standard packages to be installed on the system to build, but

not to use
● For tool developers, we want Galaxy to be quick, easy, and foolproof to start
● Galaxy solution: prepackage and provide binary distributions (eggs, wheels)
● Wheels have not solved all the problems yet (but we’ll get to that)

Python packaging history lesson

setuptools (pkg_resources, bdist_egg, easy_install)

distribute

PyPI (allows source dist, later pure python and non-Linux binary distributions)

distutils2/packaging

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 ...

distutils (Python Standard Library)

X

pip

Galaxy

wheel

A history lesson: Eggs

Wheel, and egg before it, are Ȥbuiltȥ distribution formats

An (example) non-pure Python package installation process using setuptools:

% python setup.py install

running install

 running bdist_egg

 running egg_info

 running install_lib

 running build_py # “build” pure python contents

 running build_ext # build C extensions

PyYAML-3.11-py2.7-linux-x86_64.
egg

A history lesson: Egg compatibility

Egg: setuptools’ built distribution format (and intermediary format for installation)

 six-1.9.0-py2.7.egg
PyYAML-3.11-py2.7-linux-x86_64.egg

compatible Python
version

compatible Ȥplatformȥ
for non-pure Python
packages

What is Python’s ABI compatibility?
What is linux_x86_64’s ABI compatibility?

A history lesson: Python ABI compatibility

Prior to Python 3.4, the default Python build uses UCS-2 (UTF-16) encoding, but most
vendor (Linux distribution) Pythons use UCS-4 (UTF-32) encoding. Binary artifacts
created on these two are incompatible!

Also incompatible: Debug, PyMALLOC build-time options (but in practice, all
CPythons are debug disabled, PyMALLOC enabled), the Python interpreter itself
(PyPy, Jython, etc.)

Galaxy solution: hack UCS string into egg filename, ignore debug, PyMALLOC, and
interpreter. See eggs.galaxyproject.org:
 PyYAML-3.10-py2.7-linux-x86_64-ucs2.egg
 PyYAML-3.10-py2.7-linux-x86_64-ucs4.egg

https://eggs.galaxyproject.org/

A history lesson: Linux ABI compatibility

What does linux_x86_64 mean? Are wheels built on Debian compatible with Red
Hat Enterprise Linux?

NOPE.

sorta

1. Code built on a certain version of GLIBC can not be run with an older GLIBC due
to symbol versioning

2. Some libraries linked by a package are not part of a Ȥstandardȥ Linux install
3. Other libraries (e.g. libz) do not version symbols and rarely version filenames,

but their ABIs may not be compatible

A history lesson: Linux ABI compatibility

Galaxy solution:
1. Build eggs on a system with a very old GLIBC (Debian etch/4.0)
2. Statically link non-standard libraries directly into the wheel
3. Doesn’t end up being a problem in practice

Downsides: Statically linked libraries will not receive security/bug updates like the
vendor-provided version would, do not include vendor modifications, may not
include all features

Wheels: What are wheels?

Wheels are a Ȥbuiltȥ distribution format with a defined specification[1] designed to
solve most of the deficiencies in the (unspecified) egg format.

Very similar to eggs in practice (zip file, most metadata files the same), but wheel
does not include Python bytecode (*.pyc) files and the wheel filename has more
descriptive tags[2][3] which handle the Python ABI compatibility problem:

 PyYAML-3.11-cp27-cp27mu-linux_x86_64.whl

But the generic linux_x86_64 tag is still there. More on that later...

Wheels: How does Galaxy use wheels?

Beginning with the 16.01 Galaxy release, eggs are replaced with wheels. Wheels are
fetched from wheels.galaxyproject.org.

This is done by installing a modified version of pip. The modifications are necessary
to add specificity to the platform tag section of the wheel filename (e.g.
linux_x86_64)

Three types of wheels are supported:

● Pure python
● Platform specific
● Platform generic

https://wheels.galaxyproject.org/

Wheels: Platform specific wheels

We detect the Linux distribution and version so we can produce wheels like:

psycopg2-2.6.1-cp26-cp26m-linux_x86_64_ubuntu_15_04.whl

● Pros:
○ libpq is dynamically linked - the (maintained) vendor version will be used

● Cons
○ The the target system will need to have libpq installed

○ One wheel per interpreter/UCS/arch/distro combination: https://wheels.galaxyproject.
org/simple/psycopg2/

https://wheels.galaxyproject.org/simple/psycopg2/
https://wheels.galaxyproject.org/simple/psycopg2/
https://wheels.galaxyproject.org/simple/psycopg2/

Wheels: Platform generic wheels

We build on Debian 6 and produce wheels Ȥthat should work on any modern Linuxȥ
like:

PyYAML-3.11-cp27-cp27mu-linux_x86_64.whl

● Pros:
○ Great for simple wheels with no non-standard external dependencies
○ Only one wheel per interpreter/UCS/arch combination (no distribution)

● Cons
○ Cannot link to Ȥnon-standardȥ libraries

But… see manylinux (more on this later)

What has changed?

● Some things change
○ The eggs/ directory is no longer used
○ A virtualenv is created at .venv/ and dependencies are installed there
○ Galaxy development versions use unpinned dependencies (soon)

● Some things stay the same
○ Galaxy still manages its dependencies upon startup
○ For Galaxy releases, pinned versions of dependencies are installed (for reproducibility)

● However
○ The standard tooling is used: pip and wheel
○ You can use standard pip to install dependencies from source without using our wheels

What has changed?
% sh run.sh

New python executable in .venv/bin/python

Installing setuptools, pip, wheel...done.

Activating virtualenv at .venv

Ignoring indexes: https://pypi.python.org/simple

Collecting pip==8.0.2+gx2

 Downloading https://wheels.galaxyproject.org/packages/pip-8.0.2+gx2-py2.py3-none-any.whl (1.2MB)

 100% |████████████████████████████████| 1.2MB 37.2MB/s
Installing collected packages: pip

 Found existing installation: pip 7.1.2

 Uninstalling pip-7.1.2:

 Successfully uninstalled pip-7.1.2

Successfully installed pip-8.0.2+gx2

Collecting bx-python==0.7.3 (from -r requirements.txt (line 2))

 Downloading https://wheels.galaxyproject.org/packages/bx_python-0.7.3-cp27-cp27mu-linux_x86_64.whl (1.7MB)

 100% |████████████████████████████████| 1.7MB 37.5MB/s
...

What has changed?
Installing collected packages: bx-python, ...

Collecting psycopg2==2.6.1 (from -r /dev/stdin (line 1))

 Downloading https://wheels.galaxyproject.org/packages/psycopg2-2.6.1-cp27-cp27mu-linux_x86_64_debian_stretch_sid.whl

(357kB)

 100% |████████████████████████████████| 360kB 54.5MB/s
Installing collected packages: psycopg2

Successfully installed psycopg2-2.6.1

Unsetting $PYTHONPATH

Activating virtualenv at .venv

galaxy.queue_worker INFO 2016-02-17 16:34:41,651 Initalizing main Galaxy Queue Worker on sqlalchemy+postgresql:///nate

tool_shed.tool_shed_registry DEBUG 2016-02-17 16:34:41,666 Loading references to tool sheds from .

/config/tool_sheds_conf.xml.sample

tool_shed.tool_shed_registry DEBUG 2016-02-17 16:34:41,666 Loaded reference to tool shed: Galaxy Main Tool Shed

galaxy.app DEBUG 2016-02-17 16:34:41,666 Using "galaxy.ini" config file: /home/nate/git/galaxy/config/galaxy.ini

...

Nitty gritty stuff: Virtualenv placement

For a managed installation you may not want to use .venv/ (or you may be using
uWSGI, galaxy-main, etc.).

1. Create your own virtualenv
2. Activate it
3. Use scripts/common_startup.sh (and run.sh, if applicable) with the --no-

create-venv option

More complicated stuff (using with Conda, supervisor, uWSGI) in the documentation

Nitty gritty stuff: Platform binary compatibility

Some Linux distributions (like CentOS and Red Hat Enterprise Linux) have the same
ABI and are binary compatible, meaning that wheels produced on one should work
on the other. Enter binary-compatibility.cfg:

{

"linux_x86_64_centos_6_7": {

"install": ["linux_x86_64_rhel_6_7"]

},

"linux_x86_64_centos_6": {

"install": ["linux_x86_64_rhel_6"]

}

}

Future plans: better platform generic wheels

While all of this Galaxy pip/wheel work was going on, some scientific Python folks
went about solving the same problems in a similar way, and the result is manylinux[4]

Wheels using the manylinux_x86_64 platform tag are built on CentOS 5 and work
much like Galaxy’s Ȥplatform genericȥ wheels, except:

1. The manylinux PEP[5] includes a specific list of allowed external libraries
2. They do not reuse the generic, underspecified linux_x86_64 platform tag
3. The auditwheel utility ensures that a wheel is manylinux1 compatible
4. auditwheel can bundle unallowed external libraries into the wheel

In the near future (16.04 release?), generic wheels will be replaced with manylinux

Future plans: Standardize platform specific wheels

Platform specific wheels still have a useful case: wheel deployers may prefer not to
use a bundled version of an unallowed library, and instead prefer to rely on a system
package version

For this reason, I plan to write a PEP for official specific platform tag support, and
hope to get this support added into upstream pip

Future plans: pip install galaxy, packages

Galaxy installations are cumbersome to manage. Wheel support makes simplifying
this easier. I am working on support to be able to pip install galaxy (aiming for
the 16.04 release). See pull request #921[6], issue #1152[7]

Additionally, we should be able to create Galaxy packages in other formats (e.g. .
deb, .rpm). See issue #1472[8]

References
1. PEP 0427 -- The Wheel Binary Package Format 1.0 https://www.python.org/dev/peps/pep-0427/
2. PEP 0425 -- Compatibility Tags for Built Distributions https://www.python.org/dev/peps/pep-0425/
3. PEP 3149 -- ABI version tagged .so files https://www.python.org/dev/peps/pep-3149/
4. The manylinux project https://github.com/pypa/manylinux
5. PEP 0513 -- A Platform Tag for Portable Linux Built Distributions https://www.python.org/dev/peps/pep-0513/
6. Galaxy Pull Request #921: [WIP] Make Galaxy packageable/installable https://github.com/galaxyproject/galaxy/pull/921
7. Galaxy issue #1152: Support `pip install galaxy` with dependencies https://github.com/galaxyproject/galaxy/issues/1152
8. Galaxy issue #1472: Distribute Galaxy packages https://github.com/galaxyproject/galaxy/issues/1472

Galaxy Documentation: Galaxy Framework Dependencies: https://docs.galaxyproject.org/en/release_16.
01/admin/framework_dependencies.html

https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0425/
https://www.python.org/dev/peps/pep-3149/
https://github.com/pypa/manylinux
https://www.python.org/dev/peps/pep-0513/
https://github.com/galaxyproject/galaxy/pull/921
https://github.com/galaxyproject/galaxy/issues/1152
https://github.com/galaxyproject/galaxy/issues/1472
https://docs.galaxyproject.org/en/release_16.01/admin/framework_dependencies.html
https://docs.galaxyproject.org/en/release_16.01/admin/framework_dependencies.html
https://docs.galaxyproject.org/en/release_16.01/admin/framework_dependencies.html

