# Introduction to Galaxy: RNA-seq & ChIP-seq Data Analysis

University of Cambridge 11-12 June 2015

Dave Clements Galaxy Project Johns Hopkins University





# Agenda: Day 1

### 9:30 Welcome

- 10:00 Basic Analysis with Galaxy A worked example demonstrating Galaxy Basics
- 10:50 Break
- 11:10 Basic Analysis (continued)
- 12:30 Lunch (on your own)
- 13:30 RNA-Seq Analysis Quality Control and Galaxy Workflows
- 15:00 Break
- 15:20 RNA-Seq Analysis Mapping and Splice Junction Identification
- 17:00 Done

# Goals

# Provide a basic introduction to using Galaxy for bioinformatic analysis.

Demonstrate how Galaxy can help you explore and learn options, perform analysis, and then share, repeat, and reproduce your analyses.

# Not Goals

### This workshop will not cover

- details of how tools are implemented, or
- new algorithm designs, or
- which assembler or mapper or peak caller or ... is best for you.

This workshop does cover ChIP-Seq and RNA-Seq but you won't be an expert at either of these at the end of the workshop.

You will know enough to get started, and how to use Galaxy to learn more.

### What is Galaxy?

### Data integration and analysis platform that emphasizes accessibility, reproducibility, and transparency

http://galaxyproject.org

# Galaxy is available online, for free http://usegalaxy.org

As a free (for everyone) web server integrating a wealth of tools, compute resources, petabytes of reference data and permanent storage



However, a centralized solution cannot support the different analysis needs of the entire world.

### Galaxy is available as Open Source Software

Galaxy is installed in locations around the world.

Some of them are free for anyone to use too.

http://getgalaxy.org bit.ly/gxyServers

### Galaxy is available on the Cloud







The Open Source Toolkit for Cloud Computing



http://aws.amazon.com/education http://globus.org/ http://wiki.galaxyproject.org/Cloud

### Galaxy is available with Commercial Support

A ready-to-use appliance (BioTeam)

**Cloud-based solutions** 

(ABgenomica, AIS, GenomeCloud)

**Consulting & Customization** (BioTeam, Deena Bioinformatics)

> Training (OpenHelix)



### **Galaxy Project: Further reading & Resources**

http://galaxyproject.org http://usegalaxy.org http://getgalaxy.org http://wiki.galaxyproject.org/Cloud http://bit.ly/gxychoices

# Agenda: Day 1

### 9:30 Welcome

- 10:00 Basic Analysis with Galaxy A worked example demonstrating Galaxy Basics
- 10:50 Break
- 11:10 Basic Analysis (continued)
- 12:30 Lunch (on your own)
- 13:30 RNA-Seq Analysis Quality Control and Galaxy Workflows
- 15:00 Break
- 15:20 RNA-Seq Analysis Mapping and Splice Junction Identification
- 17:00 Done

# **Basic Analysis**

# Which exons have most overlapping Repeats?

### Use Human, HG38, Chromosome 22

# test.galaxyproject.org

(~ http://usegalaxy.org/galaxy101)

# Exons & Repeats: A General Plan

- Get some data
  - Get Data → UCSC Table Browser
- Identify which exons have Repeats
- Count Repeats per exon
- Visualize, save, download, ... exons with most Repeats

### (~ http://usegalaxy.org/galaxy101 )



#### **Exons**



#### Repeats

(Identify which exons have Repeats)







# Operate on Genomic Intervals $\rightarrow$ Join (Identify which exons have Repeats)





#### **Exons**



#### **Overlap pairings**





Join, Subtract, and Group → Group (Count Repeats per exon)





**Exons** 

We've answered our question, but we can do better. Incorporate the overlap count with rest of Exon information









#### Join, Subtract, and Group $\rightarrow$ Join

(Incorporate the overlap count with rest of Exon information)



#### Text Manipulation $\rightarrow$ Cut

(Incorporate the overlap count with rest of Exon information)

# Agenda: Day 1

### 9:30 Welcome

- 10:00 Basic Analysis with Galaxy A worked example demonstrating Galaxy Basics
- 10:50 Break
- 11:10 Basic Analysis (continued)
- 12:30 Lunch (on your own)
- 13:30 RNA-Seq Analysis Quality Control and Galaxy Workflows
- 15:30 Break
- 15:50 RNA-Seq Analysis Mapping and Splice Junction Identification
- 17:00 Done



# Exons & Repeats: Exercise

Include exons with no overlaps in final output. Set the score for these to 0.

Everything you need will be in the toolboxes we used in the Exon-Repeats exercise.

### **One Possible Solution**



Solution from Stanford Kwenda and Caron Griffiths, Pretoria. Takes advantage of the fact that Exons already have 0 scores.

# Agenda: Day 1

### 9:30 Welcome

- 10:00 Basic Analysis with Galaxy A worked example demonstrating Galaxy Basics
- 10:50 Break
- 11:10 Basic Analysis (continued)
- 12:30 Lunch (on your own)
- 13:30 RNA-Seq Analysis Quality Control and Galaxy Workflows
- 15:30 Break
- 15:50 RNA-Seq Analysis Mapping and Splice Junction Identification
- 17:00 Done

### Exons & Repeats: Done?

We now know which exons have repeats, and we have that information in a format that can be understood by many tools.

Let's see what those genes do.

#### NM\_001005239\_cds\_0\_0\_chr22\_15528159\_f







# Get the damn gene



### Get the Genes

#### Remove duplicate gene names

### Text Manipulation → Unique

### Got the Genes: Look for GO Enrichment

Let's see what those genes do.

http://geneontology.org/

### Some Galaxy Terminology

### Dataset:

Any input, output or intermediate set of data + metadata History:

A series of inputs, analysis steps, intermediate datasets, and outputs

### Workflow:

A series of analysis steps Can be repeated with different data

### Exons and Repeats *History* → Reusable *Workflow*?

- The analysis we just finished was about
  - Human chr22
  - Overlap between exons and repeats
- But, ...
  - there is nothing inherent in the analysis about humans, exons or repeats
  - It is a series of steps that sets the score of one set of features to the number of overlaps from another set of features.

### Create a Workflow from a History

#### **Extract Workflow from history**

Create a workflow from this history. Edit it to make some things clearer.

 $(cog) \rightarrow Extract Workflow$ 

Run / test it Guided: rerun with same inputs Did that work?

#### On your own:

Count # of exons in each Repeat Did that work? *Why not?* Edit workflow: doc assumptions

| Histor                   | v 🖸 🌣                                                        |
|--------------------------|--------------------------------------------------------------|
| impc<br>33.3             | HISTORY LISTS<br>Saved Histories<br>Histories Shared with Me |
| 22: C                    | CURRENT HISTORY                                              |
| data                     | Create New                                                   |
| FPKN                     | Copy History                                                 |
| 21: C                    | Copy Datasets                                                |
| data                     | Share or Publish                                             |
| diffe                    | Extract Workflow                                             |
| <u>20: C</u>             | Dataset Security                                             |
| data                     | Resume Paused Jobs                                           |
| track                    | Collapse Expanded Datasets                                   |
| <u>19: C</u>             | Include Deleted Datasets                                     |
| data                     | Include Hidden Datasets                                      |
| diffe                    | Unhide Hidden Datasets                                       |
| <u>18: C</u>             | Purge Deleted Datasets                                       |
| data                     | Show Structure                                               |
| FPKN                     | Export to File                                               |
| <u>17: C</u>             | Delete                                                       |
| data                     | Delete Permanently                                           |
| diffe                    | OTHER ACTIONS                                                |
| 16: C<br>data<br>trackin | Import from File                                             |

# Agenda: Day 1

### 9:30 Welcome

- 10:00 Basic Analysis with Galaxy A worked example demonstrating Galaxy Basics
- 10:50 Break
- 11:10 Basic Analysis (continued)
- 12:30 Lunch (on your own)
- 13:30 RNA-Seq Analysis Quality Control and Galaxy Workflows
- 15:30 Break
- 15:50 RNA-Seq Analysis Mapping and Splice Junction Identification
- 17:00 Done


# Agenda: Day 1

#### 9:30 Welcome

- 10:00 Basic Analysis with Galaxy A worked example demonstrating Galaxy Basics
- 10:50 Break
- 11:10 Basic Analysis (continued)
- 12:30 Lunch (on your own)
- 13:30 RNA-Seq Analysis Quality Control and Galaxy Workflows
- 15:30 Break
- 15:50 RNA-Seq Analysis Mapping and Splice Junction Identification
- 17:00 Done

## RNA-Seq Analysis: Get the Data

Create new history

 $(cog) \rightarrow Create New$ 

Import:

Shared Data → Data Libraries → Training → RNA-Seq\*

→ Raw Reads → Select MeOH\_REP1\_R1, MeOH\_REP1\_R2 MeOH\_REP2\_R1, MeOH\_REP2\_R2

→ Reference

 $\rightarrow$  Select all

**UCDAVIS** Bioinformatics Core

\* RNA-Seq example datasets from the 2013 UC Davis Bioinformatics Short Course. http://bit.ly/ucdbsc2013

# NGS Data Quality Control

- FASTQ format
- Examine quality in an RNA-Seq dataset
- Trim/filter as we see fit, hopefully without breaking anything.

# Quality Control is not sexy. But it is vital.

## What is **FASTQ**?

#### Specifies sequence (FASTA) and quality scores (PHRED)

#### • Text format, 4 lines per entry



#### • FASTQ is such a cool standard, there are 3 (or 5) of them!

| SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                       |                         |          |                  |             |            |                                         |                                  |                 |
|-----------------------------------------------------------------------------------------------|-------------------------|----------|------------------|-------------|------------|-----------------------------------------|----------------------------------|-----------------|
| • • • • • • • • • • • • • • • •                                                               | • • • • • • • • • • • • |          | IIIII            | IIIII       | IIII       | IIIIIIIIIIIIIIIIIII                     | IIIIIIIIIIIIIIIIII               | IIIIIIIIIIIIIII |
| •••••••••••••••••••••••••••••••••••••••                                                       |                         |          |                  |             |            |                                         |                                  |                 |
| !"#\$%&'()*+,/0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijklmnopqrstuvwxyz{ }~ |                         |          |                  |             |            |                                         |                                  |                 |
|                                                                                               |                         |          |                  |             |            |                                         |                                  |                 |
| 33                                                                                            | 59                      | )        | 64               | 73          |            |                                         | 104                              | 126             |
| S - Sanger                                                                                    | Phred+33,               | 93       | values           | (0,         | 93)        | (0 to 60 expected                       | in raw reads)                    |                 |
| I - Illumina 1.3<br>X - Solexa                                                                | Phred+64,<br>Solexa+64, | 62<br>67 | values<br>values | (0,<br>(-5, | 62)<br>62) | (0 to 40 expected<br>(-5 to 40 expected | in raw reads)<br>d in raw reads) |                 |

#### http://en.wikipedia.org/wiki/FASTQ\_format

## NGS Data Quality: Assessment tools

#### NGS QC and Manipulation → FastQC

#### Generates summary quality information.

| FastQC Read C                               | uality reports (Galaxy Tool Version 0.63) 😵 Versions 🔻 Options                                                |  |  |  |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Short read data from your current history   |                                                                                                               |  |  |  |  |  |
|                                             | 12: R3G_REP3_R2.fastq                                                                                         |  |  |  |  |  |
| Contaminant list                            |                                                                                                               |  |  |  |  |  |
|                                             | No selection                                                                                                  |  |  |  |  |  |
| tab delimited file<br>RNA RT Primer CA      | with 2 columns: name and sequence. For example: Illumina Small<br>AGCAGAAGACGGCATACGA                         |  |  |  |  |  |
| Submodule and I                             | Limit specifing file                                                                                          |  |  |  |  |  |
| C 2 C                                       | □ No selection                                                                                                |  |  |  |  |  |
| a file that specifie<br>specifies the three | s which submodules are to be executed (default=all) and also sholds for the each submodules warning parameter |  |  |  |  |  |
| ✓ Execute                                   |                                                                                                               |  |  |  |  |  |

## NGS Data Quality: Assessment tools



http://bit.ly/FastQCBoxPlot

## NGS Data Quality: Sequence bias at front of reads?



From a sequence specific bias that is caused by use of random hexamers in library preparation.

Hansen, et al., "Biases in Illumina transcriptome sequencing caused by random hexamer priming" *Nucleic Acids Research*, Volume 38, Issue 12 (2010)

## NGS Data Quality Assessment: Done!

Now, just 11 more to go!

# Your Friend: The Multiple datasets button

| FastQC Read Qu                               | ality reports (Galaxy Tool Version 0.63)                                         | 🗞 Versions                    | <ul> <li>Options</li> </ul> |  |  |  |  |
|----------------------------------------------|----------------------------------------------------------------------------------|-------------------------------|-----------------------------|--|--|--|--|
| Short read data fr                           | om your current history                                                          |                               |                             |  |  |  |  |
|                                              | • MeOH_REP1_R1.fastq                                                             |                               |                             |  |  |  |  |
| Multiple datasets                            |                                                                                  |                               |                             |  |  |  |  |
| 6 2 6                                        | C No selection                                                                   |                               |                             |  |  |  |  |
| tab delimited file v<br>RNA RT Primer CA     | with 2 columns: name and sequence. For<br>AGCAGAAGACGGCATACGA                    | example: Illum                | ina Small                   |  |  |  |  |
| Submodule and L                              | imit specifing file                                                              |                               |                             |  |  |  |  |
| <b>D 2 D</b>                                 | □       □       No selection                                                     |                               |                             |  |  |  |  |
| a file that specifies<br>specifies the thres | which submodules are to be executed (<br>holds for the each submodules warning p | default=all) and<br>barameter | d also                      |  |  |  |  |
| ✓ Execute                                    |                                                                                  |                               |                             |  |  |  |  |



### NGS Data Quality: Trim as we see fit

- Trim as we see fit: Option 1
  - NGS QC and Manipulation →
     FASTQ Trimmer by column
  - Trim same number of columns from every record
  - Can specify different trim for 5' and 3' ends



## NGS Data Quality: Base Quality Trimming

- Trim Filter as we see fit: Option 2
  - NGS QC and Manipulation →
     Filter FASTQ reads by quality
     score and length
  - Keep or discard whole reads
  - Can have different thresholds for different regions of the reads.
  - Keeps original read length.



## NGS Data Quality: Base Quality Trimming

- Trim as we see fit: Option 3
  - NGS QC and Manipulation →
     FASTQ Quality Trimmer by sliding window
  - Trim from both ends, using sliding windows, until you hit a high-quality section.
  - Produces variable length reads





## Trim? As we see fit?

#### • 3 options

- One preserves original read length, two don't
- One preserves number of reads, two don't
- Two keep/make every read the same length, one does not
- One preserves pairings, two don't

## Trim? As we see fit?

#### Choice depends on downstream tools

- Find out assumptions & requirements for downstream tools and make appropriate choice(s) now.
- How to do that?
  - Read the tool documentation
  - http://biostars.org/
  - http://seqanswers.com/
  - http://galaxyproject.org/search





## Trim? As we see fit?

#### • 3 options

• ...

#### • One preserves pairings, two don't



# Keeping paired ends paired: Things to Try

- Don't bother.
- Run a workflow (try the "Re-Pair Paired ends after QC may have broken them" workflow on usegalaxy.org) that removes any unpaired reads before mapping
- Run the Picard Paired Read Mate Fixer after mapping reads.

## RNA-Seq Analysis: Restore Pairings

If your QC filters might have broken pairings, then you may want to restore them.

- Shared Data → Published Workflows
  - → Re-Pair Paired ends after QC may have broken them
    - → Import

And then Workflows

- → Re-Pair Paired ends after QC may have broken them
  - → Run

#### Re-Pair Paired ends after QC may have broken them

#### Workflow takes 4 inputs

- Forward Reads, before QC
- Reverse Reads, before QC
- Forward Reads, after QC
- Reverse Reads, after QC

#### And produces 4 outputs

- Forward reads, re-paired
- Reverse reads, re-paired
- Forward reads, singletons
- Reverse reads, singletons

#### Workflow assumes pre-QC reads are correctly paired

#### Re-Pair Paired ends after QC may have broken them



Correctly Paired Reads

#### Incorrectly Paired / Unpaired Reads

# NGS Data Quality: Sequencing Artifacts

And only now we notice a problem with MeOH Rep1 R2 (the reverse reads)

#### Overrepresented sequences

| Sequence                                                 | Count | Percentage          | Possible Source |
|----------------------------------------------------------|-------|---------------------|-----------------|
| CTGTGTATTTGTCAATTTTCTTCTCCACGTTCTTCTCGGCCTGTTTCCGTAGCCT  | 590   | 0 3541692929220167  | No Hit          |
| TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT                  | 342   | 0.2052981325073385  | No Hit          |
| CGGCCACAAATAAACACAGAAATAGTCCAGAATGTCACAGGTCCAGGGCAGAGGA  | 325   | 0.19509325457568719 | No Hit          |
| CTGCATTATAAAAAGGACAGCCAGATATCAACTGTTACAGAAATGAAAATAAGACG | 230   | 0.13806599554587093 | No Hit          |
| CGGCCGCAAATAAACACAGAAATAGTCCAGAATGTCACAGGTCCAGGGCAGAGGA  | 199   | 0.11945710049403614 | No Hit          |
| GTCAGCTCAACTTGTAGGCCCCAAAAGAAAACAGCGTCTTACTGGGGAGGGA     | 197   | 0.11825652661972422 | No Hit          |

NGS QC and Manipulation → Remove sequencing artifacts

But this will break pairings (if we still have them).

Or, can rely on mapper to just not map them.

# NGS Quality Control Revisted

"Quality Control is not sexy. But it is vital."

Really?

Do QC, or rely on bad data not to map?

#### **RNA-seq Exercise: Mapping with Tophat2**

- Tophat looks for best place(s) to map reads, and best places to insert introns
- Imagine pages and pages of discussion on the intricacies and pitfalls of RNA-seq mapping here.

Mapping with Tophat: mean inner distance

Expected distance between paired end reads

- Determined by sample prep
- We'll use 90\* for mean inner distance
- We'll use 50 for standard deviation

\* The library was constructed with the typical Illumina TruSeq protocol, which is supposed to have an average insert size of 200 bases. Our reads are 55 bases (R1) plus 55 bases (R2). So, the Inner Distance is estimated to be 200 - 55 - 55 = 90

From the 2013 UC Davis Bioinformatics Short Course

Mapping with Tophat: Use Existing Annotations?

- You can bias Tophat towards known annotations
  - Supply your own junction Data? → Yes
    - Use Gene Annotation → Yes
    - Gene Model Annotation → genes\_chr12.gtf

#### You can also restrict Tophat to known annotations

- Use Raw Junctions → Yes (tab delimited file)
- Only look for supplied junctions → Yes

#### Mapping with Tophat: Make it quicker?

#### Warning: Here be dragons!

#### Allow indel search → No

#### ● Use Coverage Search → No (wee dragons)

TopHat generates its database of possible splice junctions from two sources of evidence. The first and strongest source of evidence for a splice junction is when two segments from the same read (for reads of at least 45bp) are mapped at a certain distance on the same genomic sequence or when an internal segment fails to map - again suggesting that such reads are spanning multiple exons. With this approach, "GT-AG", "GC-AG" and "AT-AC" introns will be found *ab initio*. The second source is pairings of "coverage islands", which are distinct regions of piled up reads in the initial mapping. Neighboring islands are often spliced together in the transcriptome, so TopHat looks for ways to join these with an intron. We only suggest users use this second option (--coverage-search) for short reads (< 45bp) and with a small number of reads (<= 10 million). This latter option will only report alignments across "GT-AG" introns

TopHat Manual

# Mapping with Tophat: Max # of Alignments Allowed

Some reads align to more than one place equally well.

- For such reads, how many should Tophat include?
- If more than the specified number, Tophat will pick those with the best mapping score.
- Tophat breaks ties randomly.

#### Tophat assigns equal fractional credit to all *n* mappings

Instructs TopHat to allow up to this many alignments to the reference for a given read, and choose the alignments based on their alignment scores if there are more than this number. The default is 20 for read mapping. Unless you use --report-secondary-alignments, TopHat will report the alignments with the best alignment score. If there are more alignments with the same score than this number, TopHat will randomly report only this many alignments. In case of using --report-secondaryalignments, TopHat will try to report alignments up to this option value, and TopHat may randomly output some of the alignments with the same score to meet this number.

**TopHat Manual** 

# Mapping With Tophat: Cleanup

Use only the good stuff!

NGS BAM Tools  $\rightarrow$  Filter Mapping Quality  $\rightarrow >=20$ Insert Filter  $\rightarrow$  isProperPair: Yes Insert Filter  $\rightarrow$  reference: chr12

# Mapping With Tophat: Only 5 more to do!

Hmmm.

# Could use *Multiple Datasets* feature like we did with FastQC. Could also construct *workflows*.

Another solution is Collections **RNA-Seq Mapping With Tophat: Resources** 

<u>RNA-Seq Concepts, Terminology, and Work Flows</u> by Monica Britton

<u>Aligning PE RNA-Seq Reads to a Genome</u> by Monica Britton

both from the <u>UC Davis 2013 Bioinformatics Short Course</u>

<u>RNA-Seq Analysis with Galaxy</u> by <u>Jeroen F.J. Laros</u>, <u>Wibowo Arindrarto</u>, <u>Leon Mei</u>

from the GCC2013 Training Day

#### **RNA-Seq Analysis with Galaxy**

by Curtis Hendrickson, David Crossman, Jeremy Goecks

from the <u>GCC2012 Training Day</u>

# Agenda: Day 1

#### 9:30 Welcome

- 10:00 Basic Analysis with Galaxy A worked example demonstrating Galaxy Basics
- 10:50 Break
- 11:10 Basic Analysis (continued)
- 12:30 Lunch (on your own)
- 13:30 RNA-Seq Analysis Quality Control and Galaxy Workflows
- 15:30 Break
- 15:50 RNA-Seq Analysis Mapping and Splice Junction Identification
- 17:00 Done

# Thanks



# **Dave Clements**

Galaxy Project Johns Hopkins University clements@galaxyproject.org

# Introduction to Galaxy: RNA-seq & ChIP-seq Data Analysis

University of Cambridge 11-12 June 2015

Dave Clements Galaxy Project Johns Hopkins University





# Agenda: Day 2

- 9:30 RNA-Seq Analysis Differential expression
- 10:50 Break
- 11:10 RNA-Seq Analysis continued
- 12:30 Lunch (on your own)
- 13:30 ChIP-Seq Analysis Quality Control and Mapping
- 15:00 Break
- 15:20 ChIP-Seq Analysis Differential Binding and Comparing Results
- 16:30 Done
**RNA-Seq Analysis: Transcript Prediction** 

Create new history

 $(cog) \rightarrow Create New$ 

Import:

Shared Data → Data Libraries → Training → RNA-Seq\*

- → Mapped Filtered Reads
  - $\rightarrow$  Select all
- → Reference
  - $\rightarrow$  Select all

## **UCDAVIS** Bioinformatics Core

\* RNA-Seq example datasets from the 2013 UC Davis Bioinformatics Short Course. http://bit.ly/ucdbsc2013

## RNA-Seq Analysis: Collections



| History                        | C 🌣 🗆             |       |  |  |  |
|--------------------------------|-------------------|-------|--|--|--|
| search datasets                | 8                 |       |  |  |  |
| Cam RNA-Seq Day<br>8 shown     | 2 Test            |       |  |  |  |
| 189.3 MB                       | <b>S D</b>        |       |  |  |  |
| All None                       | For all selected  |       |  |  |  |
| <u>8: genes chr12.</u>         | gtf               |       |  |  |  |
| 7: chr12.fa                    |                   |       |  |  |  |
| 6: R3G_REP3 Mapped & Filtered  |                   |       |  |  |  |
| 5: R3G REP2 Mapped & Filtered  |                   |       |  |  |  |
| A: R3G REP1 Mapped & Filtered  |                   |       |  |  |  |
| 3: MeOH REP3 Mapped & Filtered |                   |       |  |  |  |
| 2: MeOH_REP2 Mapped & Filtered |                   |       |  |  |  |
| I: MeOH REP1                   | Mapped & Filtered | 10000 |  |  |  |



## RNA-Seq Analysis: Collections

| History                                  | S 🌣 🗆             |  |  |  |  |
|------------------------------------------|-------------------|--|--|--|--|
| search datasets                          | 8                 |  |  |  |  |
| Cam RNA-Seq Day<br>9 shown               | 2 Test            |  |  |  |  |
| 189.3 MB                                 | <b>S</b>          |  |  |  |  |
| All None                                 | For all selected  |  |  |  |  |
| <u>9: MeOH</u> a list of datasets        |                   |  |  |  |  |
| 8: genes_chr12.                          | <u>gtf</u>        |  |  |  |  |
| 7: chr12.fa                              |                   |  |  |  |  |
| <u>6: R3G_REP3_Mapped &amp; Filtered</u> |                   |  |  |  |  |
| 5: R3G REP2 Mapped & Filtered            |                   |  |  |  |  |
| A: R3G REP1 Mapped & Filtered            |                   |  |  |  |  |
| 3: MeOH REP3 Mapped & Filtered           |                   |  |  |  |  |
| 2: MeOH REP2 Mapped & Filtered           |                   |  |  |  |  |
| ✓ <u>1: MeOH REP1 M</u>                  | Mapped & Filtered |  |  |  |  |

| History                                      | С | Ф         |   |
|----------------------------------------------|---|-----------|---|
| search datasets                              |   |           | 0 |
| Cam RNA-Seq Day 2 Test<br>10 shown           |   |           |   |
| 189.3 MB                                     |   | ۲         | • |
| 10: R3G<br>a list of datasets                |   |           | × |
| <u>9: MeOH</u><br>a list of datasets         |   |           | × |
| <u>8: genes_chr12.gtf</u>                    | ۲ | ø         | × |
| <u>7: chr12.fa</u>                           | ۲ | ø         | × |
| <u>6: R3G_REP3 Mapped &amp; F</u><br>iltered | ۲ | <b>B</b>  | × |
| <u>5: R3G_REP2_Mapped &amp; F</u><br>iltered | ۲ | <b>B</b>  | × |
| <u>4: R3G_REP1 Mapped &amp; F</u><br>iltered | ۲ | <b>"</b>  | × |
| <u>3: MeOH_REP3_Mapped &amp;</u><br>Filtered | ۲ | <b>B</b>  | × |
| 2: MeOH REP2 Mapped &<br>Filtered            | ۲ | <b>B</b>  | × |
| <u>1: MeOH REP1 Mapped &amp;</u><br>Filtered | ۲ | <b>BP</b> | × |

**RNA-Seq Analysis: Transcript Prediction** 

Cufflinks and StringTie are both tools that predict transcripts based on mapped reads.

We'll use StringTie as it's rumoured to be faster and more accurate.

NGS RNA Analysis → StringTie

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT & Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads *Nature Biotechnology* 2015, doi:10.1038/nbt.3122

## RNA-Seq Analysis: StringTie

| · sungrie transcrip   | or assembly and quar | initiation (Galaxy 1001 version ) |                      | options          |
|-----------------------|----------------------|-----------------------------------|----------------------|------------------|
| Mapped reads to as    | semble transcripts   | rom                               |                      |                  |
|                       | R3G_REP3 Mapped &    | Filtered                          |                      |                  |
| Use Dataset collectio | assembly             |                                   |                      |                  |
| Do not use GFF        |                      |                                   |                      | •                |
| Options               | ✤ StringTie transc   | ript assembly and quantification  | (Galaxy Tool Version | 1.0.3) • Options |
| Use defaults          | Manned reads to      | assemble transcripts from         |                      |                  |
| Job Resource Para     |                      | 10: R3G                           |                      |                  |
| Use default job res   |                      |                                   |                      | 0                |
| ✓ Execute             | Use GFF file to gu   | 10: R3G                           |                      | 4                |
|                       | Do not use GFF       | 9: MeOH                           |                      |                  |
|                       | Options              |                                   |                      |                  |
|                       | Use defaults         |                                   |                      |                  |
|                       | Job Resource Para    | meters                            |                      |                  |
|                       | Use default job re   | source parameters                 |                      |                  |
|                       |                      |                                   |                      |                  |
|                       | ✓ Execute            |                                   |                      |                  |

**RNA-Seq Analysis: Transcript Prediction** 

- NGS RNA Analysis → StringTie
  - Use GFF to guide assembly  $\rightarrow$  Yes
  - Perform abundance information only of input transcripts
    - → No
  - Output additional files for use in Ballgown  $\rightarrow$  No Options  $\rightarrow$  Use defaults

**RNA-Seq Analysis: Transcript Prediction** 

### StringTie outputs:

## Assembled Transcripts:

Transcripts that StringTie successfully assembled

#### **Coverage:**

*Reference* transcripts that are fully covered by reads

## **RNA-Seq Analysis: Unify Predictions**

Have transcript predictions from 6 replicates Have reference transcripts as well

Cuffmerge unifies these 7 sets of predictions into a single rationalised set of transcripts.

#### **RNA-Seq Analysis: Transcript Prediction**

## Run Cuffmerge

NGS RNA Analysis → Cuffmerge Run it with the two assembled transcripts collections from StringTie Use reference Annotation? → Yes Use sequence data? → Yes Source for reference List → History, chr12.fa

- Part of the Tuxedo RNA-Seq Suite (as are Tophat, Bowtie, StringTie, Cufflinks, Cuffmerge, ...)
- Identifies differential expression between multiple datasets
- Widely used and widely installed on Galaxy instances

## NGS: RNA Analysis → Cuffdiff

Cuffdiff previously used FPKM/RPKM as central statistic. Total # mapped reads heavily influences FPKM/RPKM. Can lead to challenges when you have very highly expressed genes in the mix.

• Which Transcript definitions to use?

- Official (genes\_chr12.gtf in our case)
- MeOH or R3G Cufflinks transcripts
- Results of Cuffmerge on MeOH & R3G Cufflinks transcripts
- Depends on what you care about
  - I'll use transcripts from Cuffmerge

- Running with 2 Groups: MeOH and R3G
- Each group has 3 replicates each

## Produces many output files, all explained in doc We'll focus on gene differential expression testing

| test_id  | gene_id  | gene     | locus                     | sample_1 | sample_2 | status | value_1  | value_2  | log2(fold_change) | test_stat | p_value | q_value     | significant |
|----------|----------|----------|---------------------------|----------|----------|--------|----------|----------|-------------------|-----------|---------|-------------|-------------|
| A2M      | A2M      | A2M      | chr12:9217772-9268558     | MeOH     | R3G      | NOTEST | 3.32147  | 3.13694  | -0.0824644        | 0         | 1       | 1           | no          |
| A2M-AS1  | A2M-AS1  | A2M-AS1  | chr12:9217772-9268558     | MeOH     | R3G      | NOTEST | 7.45797  | 13.9413  | 0.902515          | 0         | 1       | 1           | no          |
| A2ML1    | A2ML1    | A2ML1    | chr12:8975149-9029381     | MeOH     | R3G      | NOTEST | 4.83055  | 7.79884  | 0.691072          | 0         | 1       | 1           | no          |
| A2MP1    | A2MP1    | A2MP1    | chr12:9381128-9386803     | MeOH     | R3G      | NOTEST | 2.49656  | 0        | -inf              | 0         | 1       | 1           | no          |
| AAAS     | AAAS     | AAAS     | chr12:53701239-53715412   | MeOH     | R3G      | OK     | 269.035  | 159.23   | -0.756683         | -2.22857  | 0.0005  | 0.00194017  | yes         |
| AACS     | AACS     | AACS     | chr12:125549924-125627871 | MeOH     | R3G      | NOTEST | 29.2933  | 35.0339  | 0.258178          | 0         | 1       | 1           | no          |
| ABCB9    | ABCB9    | ABCB9    | chr12:123405497-123451056 | MeOH     | R3G      | NOTEST | 4.68869  | 1.7732   | -1.40283          | 0         | 1       | 1           | no          |
| ABCC9    | ABCC9    | ABCC9    | chr12:21950323-22089628   | MeOH     | R3G      | OK     | 553.247  | 487.261  | -0.18323          | -2.02806  | 0.0004  | 0.00162143  | yes         |
| ABCD2    | ABCD2    | ABCD2    | chr12:39945021-40013843   | MeOH     | R3G      | OK     | 86.1377  | 172.795  | 1.00435           | 4.3436    | 5e-05   | 0.000246739 | yes         |
| ACACB    | ACACB    | ACACB    | chr12:109577201-109706030 | MeOH     | R3G      | NOTEST | 8.45306  | 15.5772  | 0.881885          | 0         | 1       | 1           | no          |
| ACAD10   | ACAD10   | ACAD10   | chr12:112123856-112194911 | MeOH     | R3G      | NOTEST | 21.8237  | 27.8326  | 0.350882          | 0         | 1       | 1           | no          |
| ACADS    | ACADS    | ACADS    | chr12:121163570-121177811 | MeOH     | R3G      | NOTEST | 38.644   | 16.1739  | -1.25658          | 0         | 1       | 1           | no          |
| ACRBP    | ACRBP    | ACRBP    | chr12:6747241-6756580     | MeOH     | R3G      | NOTEST | 2.96987  | 3.26939  | 0.138621          | 0         | 1       | 1           | no          |
| ACSM4    | ACSM4    | ACSM4    | chr12:7456927-7480969     | MeOH     | R3G      | NOTEST | 0        | 0        | 0                 | 0         | 1       | 1           | no          |
| ACSS3    | ACSS3    | ACSS3    | chr12:81471808-81649582   | MeOH     | R3G      | NOTEST | 0        | 0        | 0                 | 0         | 1       | 1           | no          |
| ACTR6    | ACTR6    | ACTR6    | chr12:100593864-100618202 | MeOH     | R3G      | OK     | 475.594  | 421.324  | -0.174799         | -0.797581 | 0.1588  | 0.258406    | no          |
| ACVR1B   | ACVR1B   | ACVR18   | chr12:52345450-52390863   | MeOH     | R3G      | NOTEST | 32.5737  | 38.3075  | 0.233922          | 0         | 1       | 1           | no          |
| ACVRL1   | ACVRL1   | ACVRL1   | chr12:52301201-52317145   | MeOH     | R3G      | NOTEST | 1.27713  | 2.16161  | 0.759201          | 0         | 1       | 1           | no          |
| ADAM1A   | ADAM1A   | ADAM1A   | chr12:112336866-112339706 | MeOH     | R3G      | NOTEST | 30.0162  | 55.2154  | 0.879331          | 0         | 1       | 1           | no          |
| ADAMTS20 | ADAMTS20 | ADAMTS20 | chr12:43748011-43945724   | MeOH     | R3G      | NOTEST | 0.453322 | 0.502067 | 0.147346          | 0         | 1       | 1           | no          |
| ADCY6    | ADCY6    | ADCY6    | chr12:49159974-49182820   | MeOH     | R3G      | NOTEST | 9.32722  | 17.6743  | 0.922135          | 0         | 1       | 1           | no          |
| ADIPOR2  | ADIPOR2  | ADIPOR2  | chr12:1800246-1897845     | MeOH     | R3G      | OK     | 207.468  | 179.333  | -0.210248         | -1.02392  | 0.09    | 0.158988    | no          |
| AEBP2    | AEBP2    | AEBP2    | chr12:19592607-19675173   | MeOH     | R3G      | OK     | 143.039  | 128.293  | -0.156957         | -0.688267 | 0.2254  | 0.344537    | no          |
| AGAP2    | AGAP2    | AGAP2    | chr12:58118075-58135944   | MeOH     | R3G      | OK     | 98.2385  | 116.302  | 0.243511          | 0.935119  | 0.11475 | 0.198086    | no          |
| AICDA    | AICDA    | AICDA    | chr12:8754761-8765442     | MeOH     | R3G      | NOTEST | 78.1514  | 63.4313  | -0.301077         | 0         | 1       | 1           | no          |
| АКАРЗ    | AKAP3    | AKAP3    | chr12:4724675-4754343     | MeOH     | R3G      | NOTEST | 6.12385  | 7.89626  | 0.366731          | 0         | 1       | 1           | no          |
| ALDH1L2  | ALDH1L2  | ALDH1L2  | chr12:105413561-105478341 | MeOH     | R3G      | NOTEST | 7.11374  | 8.11722  | 0.190377          | 0         | 1       | 1           | no          |
| ALDH2    | ALDH2    | ALDH2    | chr12:112204690-112247789 | MeOH     | R3G      | NOTEST | 12.8033  | 8.05635  | -0.668321         | 0         | 1       | 1           | no          |
| ALG10    | ALG10    | ALG10    | chr12:34175215-34181236   | MeOH     | R3G      | NOTEST | 54.8575  | 59.3459  | 0.11346           | 0         | 1       | 1           | no          |
| ALG10B   | ALG10B   | ALG10B   | chr12:38710556-38723528   | MeOH     | R3G      | NOTEST | 43.8157  | 63.0457  | 0.524952          | 0         | 1       | 1           | no          |
| ALKBH2   | ALKBH2   | ALKBH2   | chr12:109525992-109531293 | MeOH     | R3G      | OK     | 679.517  | 297.183  | -1.19316          | -3.34255  | 5e-05   | 0.000246739 | yes         |
| ALX1     | ALX1     | ALX1     | chr12:85674035-85695561   | MeOH     | R3G      | NOTEST | 0        | 0        | 0                 | 0         | 1       | 1           | no          |
|          |          |          |                           |          |          |        |          |          |                   |           |         |             |             |

# Cuffdiff: differentially expressed genes

| Column      | Contents                                                                                |
|-------------|-----------------------------------------------------------------------------------------|
| test_stat   | value of the test statistic used to compute significance of the observed change in FPKM |
| p_value     | Uncorrected P value for test statistic                                                  |
| q_value     | FDR-adjusted p-value for the test statistic                                             |
| status      | Was there enough data to run the test?                                                  |
| significant | and, was the gene differentially expressed?                                             |

- Column 7 ("status") can be FAIL, NOTEST, LOWDATA or OK
  - Filter and Sort → Filter

• c7 == 'OK'

- Column 14 ("significant") can be yes or no
  - Filter and Sort → Filter

• c14 == 'yes'

Returns the list of genes with 1) enough data to make a call, and 2) that are called as differentially expressed.

## Cuffdiff: Next Steps

Try running Cuffdiff with different normalization and dispersion estimation methods.

Compare the differentially expressed gene lists. Which settings have what type of impacts on the results?

Are there any patterns to the identified genes?

# Agenda: Day 2

- 9:30 RNA-Seq Analysis Differential expression
- 10:50 Break
- 11:10 RNA-Seq Analysis continued
- 12:30 Lunch (on your own)
- 13:30 ChIP-Seq Analysis Quality Control and Mapping
- 15:00 Break
- 15:20 ChIP-Seq Analysis Differential Binding and Comparing Results
- 16:30 Done

http://bit.ly/GxyCam2015



# Agenda: Day 2

- 9:30 RNA-Seq Analysis Differential expression
- 10:50 Break
- 11:10 RNA-Seq Analysis continued
- 12:30 Lunch (on your own)
- 13:30 ChIP-Seq Analysis Quality Control and Mapping
- 15:00 Break
- 15:20 ChIP-Seq Analysis Differential Binding and Comparing Results
- 16:30 Done

http://bit.ly/GxyCam2015

# ChIP-Seq: FASTQ data and quality control By Shannan Ho Sui

Look at two transcription factor proteins, Pou5f1 and Nanog, in H1hesc cell lines.



Both are involved in self-renewal of undifferentiated embryonic stem cells

H3ABioNet

http://hbc.github.io/ngs-workshops/courses/ introduction-to-chip-seq/

http://bit.ly/nanogname

#### ChIP-Seq Analysis: Get the Data

Import Shared Data  $\rightarrow$  Data Libraries  $\rightarrow$  Training  $\rightarrow$ **ChIP-Seq** → **Raw Reads** H1hesc\_Input\_Rep1\_chr12.fastq H1hesc\_Input\_Rep2\_chr12.fastq

#### NGS Data Quality: Assessment tools

Same tools available as yesterday:

FastQC, Sliding window, Trimmer by Column, by quality score and length

## NGS Data Quality: Trim as we see fit

- Trim as we see fit: Option 1
  - NGS QC and Manipulation →
     FASTQ Trimmer by column
  - Trim same number of columns from every record
  - Can specify different trim for 5' and 3' ends



## NGS Data Quality: Base Quality Trimming

- Trim Filter as we see fit: Option 2
  - NGS QC and Manipulation →
     Filter FASTQ reads by quality
     score and length
  - Keep or discard whole reads
  - Can have different thresholds for different regions of the reads.
  - Keeps original read length.



## NGS Data Quality: Base Quality Trimming

- Trim as we see fit: Option 3
  - NGS QC and Manipulation →
     FASTQ Quality Trimmer by sliding window
  - Trim from both ends, using sliding windows, until you hit a high-quality section.
  - Produces variable length reads



## Trim? As we see fit?

- Introduced 3 options
  - One preserves original read length, two don't
  - One preserves number of reads, two don't

Two keep/make every read the same length, one does not

## Does MACS2 care? No.

#### From the MACS Announcement mailing list

| • | lan                                                       | 10/22/14 | * | * |
|---|-----------------------------------------------------------|----------|---|---|
| ☆ | Call me Dr. Impatient, but has anyone an answer for this? |          |   |   |
|   | Thanks again.<br>- show quoted text -                     |          |   |   |
| • | Tao Liu                                                   | 10/24/14 | * | - |

Dear Dr. Impatient,

Tag size only affects how MACS (version 1) builds strand model to compute fragment size. And in MACS2, it's not even effective while computing fragment size since only 'cutting' positions are informative. But in MACS2, the so-called maximum gap (an internal value) for merging nearby significant regions is set as read length since we regard this as the resolution of vour data. In fact, it has very little impact on peak calling So... briefly, you don't need to worry about this parameter. Longer reads help a lot for the reads alignment, but not much for peak calling.

Best, Tao

## Does MACS2 care? No

- Trim as we see fit: Option 3
  - NGS QC and Manipulation →
     FASTQ Quality Trimmer by
     sliding window
  - Trim from both ends, using sliding windows, until you hit a high-quality section.
  - Produces variable length reads



## ChIP-Seq Analysis: Get the Data

Shared Data → Data Libraries → Training → ChIP-Seq Select everything in the Filtered Reads folder Also grab genes\_chr12.gtf from library

#### **ChIP-Seq Exercise: Mapping with Bowtie**

Use Bowtie2 (could also use BWA)

NGS Mapping: → Bowtie2

FASTQ file → H1hesc\_Nanog\_Rep1 post-QC Single End

#### ChIP-Seq Analysis: remove unmapped reads

NGS Picard → FilterSamReads

Filtering Type → Include Aligned

## ChIP-Seq Analysis: Get the Data

# Shared Data → Data Libraries → Training → ChIP-Seq Select everything in the Mapped Reads folder (These already have unmapped removed.)

#### **ChIP-Seq Analysis: Find Peaks**

NGS: ChIP-seq → MACS2 callpeak Treatment File → Nanog Rep 1 Control File → H1hesc\_Input\_Rep2\_chr12 Mapped BAM file Outputs → Peaks, Scores

https://github.com/taoliu/MACS/

## **ChIP-Seq Analysis: Replicates**

Shared Data  $\rightarrow$  Data Libraries  $\rightarrow$  Training  $\rightarrow$  ChIP-Seq  $\rightarrow$ MACS Outputs  $\rightarrow$  Peaks in BED format Import files for Nanog Rep 2 Pou5f1 Rep 1 Pou5f1 Rep 2 (or just get all 4)

#### **ChIP-Seq Analysis: Unify Replicates**

Operate on Genomic Intervals → Concatenate Concatenate Nanog Rep 1 and 2 peak files

Operate on Genomic Intervals → Cluster Use default parameters Rename the output dataset

### **ChIP-Seq Analysis: Unify Replicates**

Repeat for Pou5f1 replicates

Operate on Genomic Intervals → Concatenate

Concatenate Pou5f1 Rep 1 and 2 Peak files

Operate on Genomic Intervals → Cluster

Use default parameters

Rename the output dataset
ChIP-Seq Analysis: Differential binding Operate on Genomic Intervals → Subtract First dataset clustered → Pou5f1 Second dataset clustered → Nanog Return → Intervals with no overlap ChIP-Seq Mapping With MACS Further reading & Resources

<u>ChIP-Seq: FASTQ data and quality control</u> by Shannan Ho Sui

**HAIB TFBS ENCODE collection** 

**MACS Documentation** 

Model-based analysis of ChIP-Seq (MACS) by Zhang *et al*.

**<u>Cistrome</u>** and <u>Nebula</u> Galaxy Servers

<u>Nebula Tutorial</u> by Valentina Boeva

# Agenda: Day 2

- 9:30 RNA-Seq Analysis Differential expression
- 10:50 Break
- 11:10 RNA-Seq Analysis continued
- 12:30 Lunch (on your own)
- 13:30 ChIP-Seq Analysis Quality Control and Mapping
- 15:00 Break
- 15:20 ChIP-Seq Analysis Differential Binding and Comparing Results
- 16:30 Done (almost)

http://bit.ly/GxyCam2015

## Your Feedback: We need it

#### The Galaxy Team



Enis Afgan

**Dannon Baker** 

Dan Blankenberg

**Dave Bouvier** 

Marten Cech

John Chilton



**Dave Clements** 

Nate Coraor

**Carl Eberhard** 

Jeremy Goecks

**James** Taylor





Jen Jackson

**Ross Lazarus** 

Anton Nekrutenko

Nick Stoler

Nitesh Turaga

http://wiki.galaxyproject.org/GalaxyTeam

#### Galaxy is hiring post-docs and software engineers



Please help. http://wiki.galaxyproject.org/GalaxyIsHiring Also thanks to

**Gabriella Rustici** Paul Judge **Cathy Hemmings Anne Pajon** 8 You

# Agenda: Day 2

- 9:30 RNA-Seq Analysis Differential expression
- 10:50 Break
- 11:10 RNA-Seq Analysis continued
- 12:30 Lunch (on your own)
- 13:30 ChIP-Seq Analysis Quality Control and Mapping
- 15:00 Break
- 15:20 ChIP-Seq Analysis Differential Binding and Comparing Results
- 16:30 Done

## http://bit.ly/GxyCam2015

#### Thanks



### **Dave Clements**

Galaxy Project Johns Hopkins University clements@galaxyproject.org