
Enabling Multi-task computation on

Galaxy based Gateways using Swift

Ketan Maheshwari, Alex Rodriguez, David Kelly, Ravi

Madduri, Justin Wozniak, Michael Wilde, Ian Foster

Argonne National Laboratory & University of Chicago

Overview

 Couple the Swift and Galaxy gateway frameworks

 Combine the features offered by Galaxy and Swift into an

integrated platform

 Benefits to user communities from both systems

 Ease in the uptake of new resources

 Different integration schemes based on user

requirements, and application characteristics

swift-lang.org

2

Motivation

 Swift and Galaxy offer complementary functionalities to

scientific community

 Galaxy (galaxyproject.org) offers a simple, user-friendly web-

based interface for composing, execution, monitoring

workflows

 Galaxy workflow results are sharable, reproducible and

reusable

 Swift on the other hand, provides a sophisticated parallel and

distributed computing platform

 Swift scripts are structured expressions of complex

application flows which are readily executable on multiple,

diverse and independent remote resources

swift-lang.org

3

 Swift: Enabling many-task applications

 Simulation of super-
cooled glass materials

 Protein folding using
homology-free approaches

 Climate model analysis and
decision making in energy
policy

 Simulation of RNA-protein
interaction

 Multiscale subsurface
flow modeling

 Modeling of power grid
applications

 All have published science
results obtained using Swift

T0623, 25 res., 8.2Å to 6.3Å
(excluding tail)

Protein loop modeling. Courtesy A. Adhikari

Native
 Predicted

Initial

E

D

C

A B

A

B

C

D

E

F

F >

swift-lang.org

4

Galaxy web-console

Swift-Galaxy Integration Schemes

 Approaches enabling integration in different ways:

– At tool level

– At Workflow level

– At language/expression level

Galaxy

server Galaxy-tool Swift

app libraries

Clusters

Supercomputers

Grids

Clouds

swift-lang.org

5

Scheme1: Wrap Swift around Galaxy Tools

swift-tool A

swift-tool B

swift-tool N

Other Galaxy

tools

.

.

.

.

.

execution history

execution history

execution history

.

.

.

swift-lang.org

6

Scheme 2:
Interoperability between Swift and Galaxy expressions

Swift script Galaxy Workflow

swift-lang.org

7

XML transformation

Scheme 3: Harness Data Parallelism using foreach

Galaxy-tool

Galaxy-tool

Galaxy-tool

.

.

in-data

(split)

out-data

(merge)

swift-foreach wrapper

swift-lang.org

8

Data Management

 Both Galaxy and Swift offer various data management

capabilities

 Galaxy offers remote data uploading and viewing capabilities

 Swift allows disc resident data to be operated upon as

program variables

 Swift’s data-providers are interfaced with various data

management protocols and can manage data motions at

runtime

swift-lang.org

9

Computational Infrastructure

 Galaxy offers a limited support for Resource Managers

– Needs additional configuration

– Constrained, e.g. needs shared file system*

 Swift is robustly interfaced to a wider types of Resource

Managers with finer control over job submission parameters:

– Supports: PBS/Torque, SGE, SLURM, Condor

– Supports bag-of-workstations: clouds, workstation clusters

– Supports distributed file system, multiple execution sites

simultaneously

swift-lang.org * To the best of our knowledge

10

Evaluation: Inference analysis for power prices

generate

sample

Candidate

Solution

Variance &

Mean

generate

sample

Candidate

Solution

generate

sample
generate

sample

generat

e

sample

generat

e

sample

lower

bound

upper

bound

…

…

… …

samples

batches

batch size lower

bound

upper

bound

… …

…

swift-lang.org

11

Swift Script for Inference Analysis

import "mappings";

import "apps”;
type file;

int nS[] = [10, 100, 1000, 10000, 100000];

foreach S, idxs in nS {

 sample0 = gensample(S, wind_data);

 obj[idxs] = ampl(sample0);

 foreach B, idxb in [10:40:10] {

 foreach k in [0:B]{

 sample1 = gensample(S, wind_data);

 obj_l[idxs][idxb][k] = ampl_L(sample1);

 sample2 = gensample(S, wind_data);

 obj_u[idxs][idxb][k] = ampl_U(sample2, obj[idxs]);

}}}

swift-lang.org

12

Summary

 Swift-Galaxy integration improves science gateways:

– User control

– Structured distributed computing

– Simple

– Interactive

 Commonalities in basic execution model of Galaxy and Swift

leads to many avenues of integration schemes

 Broadly, Swift acts as a backend manager while Galaxy being

the frontend for operations

 Example of combining command-line and GUI based

frameworks

swift-lang.org

13

Future Work

 A generic approach for each of the integration schemes

 Wider application adaptation

 Finer as well as broader exposure to configuration options to

users

 Interactive run monitoring features

 Authentication features, Globus based identity management

swift-lang.org

14

Acknowledgements

 This work was supported by the U.S. Department of Energy,

Office of Science, under Contract DE-AC02-06CH11357

 Colleagues at Swift and Globus groups

swift-lang.org

15

Evaluation: Demonstration via a Screencast

Video

swift-lang.org

16

Thank you!

swift-lang.org

swift-lang.org

17

