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Agenda

Galaxy Basics
Tophat (RNA-seq read mapping)

» algorithm discussion

»  tool description, inputs, and output visualization
Cufflinks (Isoform assembly)

» algorithm discussion

»  run Cufflinks, visualize output

»  change parameters and rerun
Filter tools

» toremove assembly artifacts
Workflows

» creating and editing a workflow

» running a workflow on another sample
Cuffmerge

» algorithm discussion

»  run CuffMerge

Cuffdiff
» algorithm discussion
»  run Cuffdiff

Galaxy 101




Create an account

Shared Data --> Published Histories

» copy histories into your account

Use UCSC to fetch hgl9 gene annotation in BED
format for chromosome 22




Read Alignment

Challenges? Options?




Reads in RNA-seq
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Sequence Alignment/Map (SAM/BAM)

Popular format for storing mapped reads
SAM is text, BAM is binary

Galaxy makes it easy to convert between SAM and BAM (and convert to
interval)

ERR030889.57680506 256 chrll 1548912 1 75M * 0 O

GTTGCAGTGAGCTGAGATCGCACCACTGCACTCCAGCCTGGGCAACAGAGTG
AGACTCCGTCTCAAGAAAAATAA

HHHHHFFEF*FFFFFFHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHGH
HHIHHHHHIFGHITHFHHEBEBC

NM:i:2 NH:1:3 CC:Z:chr22 CP:1:29194605 HI:i:0




RNA-seg mapping
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ABSTRACT

Motivation: A new protocol for sequencing the messenger RNA
in a cell, known as RNA-Seq, generates millions of short sequence
fragments in a single run. These fragments, or ‘reads’, can be used
to measure levels of gene expression and to identify novel splice
variants of genes. However, current software for aligning RNA-Seq
data to a genome relies on known splice junctions and cannot identify
novel ones. TopHat is an efficient read-mapping algorithm designed
to align reads from an RNA-Seq experiment to a reference genome
without relying on known splice sites.

Results: We mapped the RNA-Seq reads from a recent mammalian
RNA-Seq experiment and recovered more than 72% of the splice
junctions reported by the annotation-based software from that study,
along with nearly 20 000 previously unreported junctions. The TopHat
pipeline is much faster than previous systems, mapping nearly 2.2
million reads per CPU hour, which is sufficient to process an entire
RNA-Seq experiment in less than a day on a standard desktop
computer. We describe several challenges unique to ab initio splice
site discovery from RNA-Seq reads that will require further algorithm
development.

measurements of expression at comparable cost (Marioni et al.,
2008).

The major drawback of RNA-Seq over conventional EST
sequencing is that the sequences themselves are much shorter,
typically 25-50nt versus several hundred nucleotides with older
technologies. One of the critical steps in an RNA-Seq experiment
is that of mapping the NGS ‘reads’ to the reference transcriptome.
However, because the transcriptomes are incomplete even for well-
studied species such as human and mouse, RNA-Seq analyses
are forced to map to the reference genome as a proxy for
the transcriptome. Mapping to the genome achieves two major
objectives of RNA-Seq experiments:

(1) Identification of novel transcripts from the locations of
regions covered in the mapping.

(2) Estimation of the abundance of the transcripts from their depth
of coverage in the mapping.

Because RNA-Seq reads are short, the first task is challenging.
Current mapping strategies (e.g. Cloonan et al., 2008; Marioni et al.,




TopHat: island / cluster
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TopHat: island / cluster

Map reads to whole
genome with Bowtie
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TopHat: splice junctions

Map reads to whole
genome with Bowtie
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TopHat: IUM

Seed-and-extend strategy:

1. Find I[UM span junctions at least
k bases on each side

2. 2k-mer 'seed'is constructed by
concatenating the k bases on left
and right islands

3. Mismatches are allowed except
seed regions
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TopHat

Map RNA-seq reads to a reference genome
» gapped/spliced mapper

Outputs (4)
» BAM file of mapped reads
» BED files for splice junctions, insertions, deletions




Goal: Understand Mapped Reads




Visualization --> New Visualization
»  build: hg19

Add datasets to Visualization
» add hgl9 gene annotation
» add all Tophat datasets
» gotochr22:29189371-29196677

Questions to answer:
» how many splice junctions do you see? insertions? deletions?
» do you see any reads that cross XBP1'‘s small intron?

Things to try:
» change track options
» show more data (click on icons)




Assembling & Quantifying Expression

Expression values can be tabulated for individual gene loci, transcripts,
exons and splice junctions

Gene expression values typically reported in FPKM

» Number of reads (paired read = 2 fragments) per kb of exonic bases per million
reads in the library

» Why?

Various software available
» ERANGE (Mortazavi et al, 2008. PMID: 18516045)
» DEGseq package (Wang et al, 2010. PMID: 19855105)

» ALEXA-Seq (Griffith et al, in revision)
» Cufflinks (Trapnell et al, 2010. PMID: 20436464), probably supplants ERANGE




nature
biotechnology

LETTERS

Transcript assembly and quantification by RNA-Seq
reveals unannotated transcripts and isoform switching

during cell differentiation

Cole Trapnell'~%, Brian A Williams*, Geo Pertea?, Ali Mortazavi?, Gordon Kwan*, Marijke J van Baren>,

Steven L Salzberg!2, Barbara ] Wold* & Lior Pachter>%7

High-throughput mRNA sequencing (RNA-Seq) promises
simultaneous transcript discovery and abundance estimationl-3.
However, this would require algorithms that are not restricted
by prior gene annotations and that account for alternative
transcription and splicing. Here we introduce such algorithms
in an open-source software program called Cufflinks. To test
Cufflinks, we sequenced and analyzed >430 million paired
75-bp RNA-Seq reads from a mouse myoblast cell line over

a differentiation time series. We detected 13,692 known
transcripts and 3,724 previously unannotated ones, 62% of
which are supported by independent expression data or by
homologous genes in other species. Over the time series, 330
genes showed complete switches in the dominant transcription
start site (TSS) or splice isoform, and we observed more

subtle shifts in 1,304 other genes. These results suggest that
Cufflinks can illuminate the substantial regulatory flexibility
and complexity in even this well-studied model of muscle
development and that it can improve transcriptome-based
genome annotation.

(75 bp in this work versus 25 bp in our previous work) and pairs of
reads from both ends of each RNA fragment can reduce uncertainty
in assigning reads to alternative splice variants!2. To produce use-
ful transcript-level abundance estimates from paired-end RNA-Seq
data, we developed a new algorithm that can identify complete novel
transcripts and probabilistically assign reads to isoforms.

For our initial demonstration of Cufflinks, we performed a time
course of paired-end 75-bp RNA-Seq on a well-studied model of
skeletal muscle development, the C2C12 mouse myoblast cell line!3
(see Online Methods). Regulated RNA expression of key transcrip-
tion factors drives myogenesis, and the execution of the differentia-
tion process involves changes in expression of hundreds of genes!*1>.
Previous studies have not measured global transcript isoform expres-
sion; however, there are well-documented expression changes at the
whole-gene level for a set of marker genes in this system. We aimed to
establish the prevalence of differential promoter use and differential
splicing, because such data could reveal much about the model sys-
tem’s regulatory behavior. A gene with isoforms that code for the
same protein may be subject to complex regulation to maintain a
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Estimating Transcript Abundances

how to know which transcript a fragment belongs
to?

read lengths used to create a (multidimensional)
linear model of transcript abundances

» read length model is critical




The likelihood function is given by
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Cufflinks

Assembles transcripts and quantifies them

Input: aligned RNA-Seq reads, usually from TopHat, but
can be from Bowtie or BWA

Outputs
» assembled transcripts (GTF)
» genes’ and transcripts’ coordinates, expression levels




General Feature Format (GFF)
Gene Transfer Format (GTF)

Generic format for specifying connected intervals
on the genome

» interval can be transcript, exon, TSS, UTR, etc.

» feature spread across multiple lines

» attributes at the end of line

chr22 Cufflinks transcript 29189653 29192232 1000 - .

gene id "CUFF.1"; transcript id "CUFF.1.1"; FPKM
"296772.2359645074"; frac "0.660032"; conf lo "289221.149392";
conf hi "304323.322538"; cov "289.709057";




Goal: Create Reasonable Transcript
Assembly for XBP1




Run Cufflinks with default parameters
» add assembled transcripts to visualization

Try reference-guided option

» add to visualization

Try lowering minimum isoform fraction and/or pre-
mrna fractions

» add to visualization




Goal: Filter to Remove Assembly Artifacts




Developing filter criteria
» use visualization

» mouse over to see information and/or use dynamic
filters

» can “run on complete dataset”

Galaxy tools for filtering
» Filter via column using expression
» Filter GFF data by attribute




Goal: Use Workflow to Automate
Transcript Assembly and Filtering




Create a workflow with the following steps:
» Cufflinks with reference-guided option
» Filter with condition Score >= 224
» Filter by GFF attribute with condition FPKM > 3

Run workflow on mapped reads from brain




Cuffmerge/compare

Goals
» generate complete list of transcripts for a set of transcripts

» compare assembled transcripts to a reference annotation
Inputs: assembled transcripts from Cufflinks

Outputs:
» Transcripts Combined File
» Transcripts Accuracy File
» Transcripts Tracking Files




Cuffmerge

Run and visualize output :)




Cuffdiff

Goals
» differential expression testing
» transcript quantification
Inputs
» Combined set of transcripts

» mapped reads from 2+ samples

Outputs

» differential expression tests for transcripts, genes, splicing,
promoters, CDS

» quantification values for most elements




Cuffdiff

Run it and start reading documentation :)




Learning Galaxy

http://wiki.g2.bx.psu.edu/Learn

Galaxy 101 http://usegalaxy.org/galaxy101
Screencasts

Shared Pages, Histories & Workflows
Other Tutorials

Datasets

Tools

Visualization

User Accounts

Search Galaxy content: http://galaxy.psu.edu/search/
Mailing lists: http://wiki.g2.bx.psu.edu/Mailing%20Lists

» galaxy-user for analysis questions




