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Agenda
Galaxy	  Basics

Tophat	  (RNA-‐seq	  read	  mapping)
‣ algorithm	  discussion

‣ tool	  descrip>on,	  inputs,	  and	  output	  visualiza>on

Cufflinks	  (Isoform	  assembly)
‣ algorithm	  discussion
‣ run	  Cufflinks,	  visualize	  output
‣ change	  parameters	  and	  rerun

Filter	  tools
‣ to	  remove	  assembly	  ar>facts

Workflows
‣ crea>ng	  and	  edi>ng	  a	  workflow

‣ running	  a	  workflow	  on	  another	  sample

Cuffmerge
‣ algorithm	  discussion
‣ run	  CuffMerge

Cuffdiff
‣ algorithm	  discussion
‣ run	  Cuffdiff

Galaxy	  101
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Galaxy	  Basics

Create	  an	  account

Shared	  Data	  -‐-‐>	  Published	  Histories
‣ copy	  histories	  into	  your	  account

Use	  UCSC	  to	  fetch	  hg19	  gene	  annota<on	  in	  BED	  
format	  for	  chromosome	  22
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Read	  Alignment

Challenges?	  Op<ons?
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Reads	  in	  RNA-‐seq
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Sequence	  Alignment/Map	  (SAM/BAM)

Popular	  format	  for	  storing	  mapped	  reads

SAM	  is	  text,	  BAM	  is	  binary

Galaxy	  makes	  it	  easy	  to	  convert	  between	  SAM	  and	  BAM	  (and	  convert	  to	  
interval)

ERR030889.57680506 256 chr11 1548912 1 75M * 0 0
GTTGCAGTGAGCTGAGATCGCACCACTGCACTCCAGCCTGGGCAACAGAGTG
AGACTCCGTCTCAAGAAAAATAA
HHHHHFFF*FFFFFFHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHGH
HHIHHHHHIFGHIIHFHHEBEBC
NM:i:2 NH:i:3 CC:Z:chr22 CP:i:29194605 HI:i:0
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RNA-‐seq	  mapping
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ABSTRACT
Motivation: A new protocol for sequencing the messenger RNA
in a cell, known as RNA-Seq, generates millions of short sequence
fragments in a single run. These fragments, or ‘reads’, can be used
to measure levels of gene expression and to identify novel splice
variants of genes. However, current software for aligning RNA-Seq
data to a genome relies on known splice junctions and cannot identify
novel ones. TopHat is an efficient read-mapping algorithm designed
to align reads from an RNA-Seq experiment to a reference genome
without relying on known splice sites.
Results: We mapped the RNA-Seq reads from a recent mammalian
RNA-Seq experiment and recovered more than 72% of the splice
junctions reported by the annotation-based software from that study,
along with nearly 20 000 previously unreported junctions. The TopHat
pipeline is much faster than previous systems, mapping nearly 2.2
million reads per CPU hour, which is sufficient to process an entire
RNA-Seq experiment in less than a day on a standard desktop
computer. We describe several challenges unique to ab initio splice
site discovery from RNA-Seq reads that will require further algorithm
development.
Availability: TopHat is free, open-source software available from
http://tophat.cbcb.umd.edu
Contact: cole@cs.umd.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
For many years, the standard method for determining the sequence
of transcribed genes has been to capture and sequence messenger
RNA using expressed sequence tags (ESTs) (Adams et al.,
1993) or full-length complementary DNA (cDNA) sequences
using conventional Sanger sequencing technology. Recently a new
experimental method, RNA-Seq, has emerged that has a number
of advantages over conventional EST sequencing: it uses next-
generation sequencing (NGS) technologies that can sample the
mRNA with fewer biases, it generates far more data per experiment,
and it generates data that can be used as a direct measure of the
level of gene expression. Thus RNA-Seq experiments not only
capture the transcriptome, they can replace conventional microarray
experiments for measuring expression. Compared with microarray
technology, RNA-Seq experiments provide much higher resolution

∗To whom correspondence should be addressed.

measurements of expression at comparable cost (Marioni et al.,
2008).

The major drawback of RNA-Seq over conventional EST
sequencing is that the sequences themselves are much shorter,
typically 25–50 nt versus several hundred nucleotides with older
technologies. One of the critical steps in an RNA-Seq experiment
is that of mapping the NGS ‘reads’ to the reference transcriptome.
However, because the transcriptomes are incomplete even for well-
studied species such as human and mouse, RNA-Seq analyses
are forced to map to the reference genome as a proxy for
the transcriptome. Mapping to the genome achieves two major
objectives of RNA-Seq experiments:

(1) Identification of novel transcripts from the locations of
regions covered in the mapping.

(2) Estimation of the abundance of the transcripts from their depth
of coverage in the mapping.

Because RNA-Seq reads are short, the first task is challenging.
Current mapping strategies (e.g. Cloonan et al., 2008; Marioni et al.,
2008; Mortazavi et al., 2008; Sultan et al., 2008) include alignment
procedures designed to localize Illumina or SOLiD reads to known
exons in the genome. However, whenever an RNA-Seq read spans
an exon boundary, part of the read will not map contiguously to the
reference, which causes the mapping procedure to fail for that read.
The studies cited above solve this problem by concatenating known
adjacent exons and then creating synthetic sequence fragments from
these spliced transcripts. Reads that do not align to the genome but
that map to these synthetic fragments represent evidence for splice
junctions between known exons.

We can detect splice sites ab initio by identifying reads that span
exon junctions, but this strategy presents a number of computational
challenges, especially with short read lengths. For rarely transcribed
genes, many splice junctions may be spanned by very few reads.
Therefore, a splice junction mapping algorithm must be able to
identify reads that may have only a few bases on one side of a
junction, or else that junction will be missed. Improvements in read
length will not completely resolve this problem. However, failing to
look for novel junctions at a genome-wide scale wastes much of the
potential of RNA-Seq for capturing and describing the transcriptome
of a human cell (or other species).

One recent method for ab initio junction mapping relies on
a machine learning strategy to identify junctions. QPALMA
(De Bona et al., 2008) trains a support vector machine-like
algorithm using known splice junctions from the genome of interest.

© 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
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TopHat:	  island	  /	  cluster

1. Map reads to genome/
transcriptome with no 
gaps to generate 
“exonic” islands

2. Map initially unmappable 
reads across islands, 
creating gapped, mapped 
reads

 



TopHat:	  island	  /	  cluster

To prevent psedo-gaps of 
low-expressed genes, 
merge islands within 
70bp of each other
(Introns > 70bp)

 



TopHat:	  splice	  juncMons	  

Find GT-AG pairing sites 
between neighboring (not 
adjacent) islands

The distance between two 
sites should > 70bp and <20k 
bp, as intron length lies 
within this range



Seed-‐and-‐extend	  strategy:	  

1. Find	  IUM	  span	  junc<ons	  at	  least	  
k	  bases	  on	  each	  side

2. 2k-‐mer	  'seed'	  is	  constructed	  by	  
concatena<ng	  the	  k	  bases	  on	  leN	  
and	  right	  islands

3. Mismatches	  are	  allowed	  except	  
seed	  regions

TopHat:	  IUM	  	  

Fig:	  Dark	  gray	  is	  seeds

Align	  s	  length	  iniMally	  unmapped	  reads	  to	  
potenMal	  splice	  juncMos



TopHat

Map	  RNA-‐seq	  reads	  to	  a	  reference	  genome
‣ gapped/spliced	  mapper

Outputs	  (4)
‣ BAM	  file	  of	  mapped	  reads
‣ BED	  files	  for	  splice	  juncMons,	  inserMons,	  deleMons
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Goal:	  Understand	  Mapped	  Reads
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Visualize	  Tophat	  Reads

VisualizaMon	  -‐-‐>	  New	  VisualizaMon
‣ build:	  hg19

Add	  datasets	  to	  VisualizaMon
‣ add	  hg19	  gene	  annotaMon
‣ add	  all	  Tophat	  datasets
‣ go	  to	  chr22:29189371-‐29196677

QuesMons	  to	  answer:
‣ how	  many	  splice	  juncMons	  do	  you	  see?	  inserMons?	  deleMons?
‣ do	  you	  see	  any	  reads	  that	  cross	  XBP1‘s	  small	  intron?

Things	  to	  try:
‣ change	  track	  opMons
‣ show	  more	  data	  (click	  on	  icons)
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Assembling	  &	  QuanMfying	  Expression

Expression	  values	  can	  be	  tabulated	  for	  individual	  gene	  loci,	  transcripts,	  
exons	  and	  splice	  juncMons

Gene	  expression	  values	  typically	  reported	  in	  FPKM
‣ Number	  of	  reads	  (paired	  read	  =	  2	  fragments)	  per	  kb	  of	  exonic	  bases	  per	  million	  

reads	  in	  the	  library
‣ Why?

Various	  soaware	  available
‣ ERANGE	  (Mortazavi	  et	  al,	  2008.	  PMID:	  18516045)
‣ DEGseq	  package	  (Wang	  et	  al,	  2010.	  PMID:	  19855105)
‣ ALEXA-‐Seq	  (Griffith	  et	  al,	  in	  revision)
‣ Cufflinks	  (Trapnell	  et	  al,	  2010.	  PMID:	  20436464),	  probably	  supplants	  ERANGE

15
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High-throughput mRNA sequencing (RNA-Seq) promises 
simultaneous transcript discovery and abundance estimation1–3. 
However, this would require algorithms that are not restricted 
by prior gene annotations and that account for alternative 
transcription and splicing. Here we introduce such algorithms 
in an open-source software program called Cufflinks. To test 
Cufflinks, we sequenced and analyzed >430 million paired 
75-bp RNA-Seq reads from a mouse myoblast cell line over 
a differentiation time series. We detected 13,692 known 
transcripts and 3,724 previously unannotated ones, 62% of 
which are supported by independent expression data or by 
homologous genes in other species. Over the time series, 330 
genes showed complete switches in the dominant transcription 
start site (TSS) or splice isoform, and we observed more 
subtle shifts in 1,304 other genes. These results suggest that 
Cufflinks can illuminate the substantial regulatory flexibility 
and complexity in even this well-studied model of muscle 
development and that it can improve transcriptome-based 
genome annotation.

Recently, RNA-Seq has revealed tissue-specific alternative splicing4, 
novel genes and transcripts5 and genomic structural variations6. 
Deeply sampled RNA-Seq permits measurement of differential gene 
expression with greater sensitivity than expression7 and tiling8 micro-
arrays. However, the analysis of RNA-Seq data presents major chal-
lenges in transcript assembly and abundance estimation, arising from 
the ambiguous assignment of reads to isoforms8–10.

In earlier RNA-Seq experiments conducted by some of us, we esti-
mated the relative expression for each gene as the fraction of reads 
mapping to its exons after normalizing for gene length11. We did not 
attempt to allocate reads to specific alternate isoforms, although we 
found ample evidence that multiple splice and promoter isoforms are 
often coexpressed in a given tissue2. This raised biological questions 
about how the different forms are distributed across cell types and 
physiological states. In addition, our prior methods relied on anno-
tated gene models that, even in mouse, are incomplete. Longer reads 

(75 bp in this work versus 25 bp in our previous work) and pairs of 
reads from both ends of each RNA fragment can reduce uncertainty 
in assigning reads to alternative splice variants12. To produce use-
ful transcript-level abundance estimates from paired-end RNA-Seq 
data, we developed a new algorithm that can identify complete novel 
transcripts and probabilistically assign reads to isoforms.

For our initial demonstration of Cufflinks, we performed a time 
course of paired-end 75-bp RNA-Seq on a well-studied model of 
skeletal muscle development, the C2C12 mouse myoblast cell line13 
(see Online Methods). Regulated RNA expression of key transcrip-
tion factors drives myogenesis, and the execution of the differentia-
tion process involves changes in expression of hundreds of genes14,15. 
Previous studies have not measured global transcript isoform expres-
sion; however, there are well-documented expression changes at the 
whole-gene level for a set of marker genes in this system. We aimed to 
establish the prevalence of differential promoter use and differential  
splicing, because such data could reveal much about the model sys-
tem’s regulatory behavior. A gene with isoforms that code for the 
same protein may be subject to complex regulation to maintain a 
certain level of output in the face of changes in expression of its 
transcription factors. Alternatively, genes with isoforms that encode  
different proteins could be functionally specialized for different cell 
types or states. By analyzing changes in the relative abundances of 
transcripts produced by the alternative splicing of a single primary 
transcript, we hoped to infer the effects of post-transcriptional  
processing (for example, splicing) on RNA output separately from 
rates of primary transcription. Such analysis could identify key 
genes in the system and suggest experiments to establish how they 
are regulated.

We first mapped sequenced fragments to the mouse genome using 
an improved version of TopHat16, which can align reads across splice 
junctions without relying on gene annotation (Supplementary 
Methods, section 2). A fragment corresponds to a single cDNA 
molecule, which can be represented by a pair of reads from each 
end. Out of 215 million fragments, 171 million (79%) mapped to 
the genome, and 46 million spanned at least one putative splice 

Transcript assembly and quantification by RNA-Seq 
reveals unannotated transcripts and isoform switching 
during cell differentiation
Cole Trapnell1–3, Brian A Williams4, Geo Pertea2, Ali Mortazavi4, Gordon Kwan4, Marijke J van Baren5,  
Steven L Salzberg1,2, Barbara J Wold4 & Lior Pachter3,6,7

1Department of Computer Science and 2Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA. 3Department of 
Mathematics, University of California, Berkeley, California, USA. 4Division of Biology and Beckman Institute, California Institute of Technology, Pasadena, California, 
USA. 5Genome Sciences Center, Washington University in St. Louis, St. Louis, Missouri, USA. 6Department of Molecular and Cell Biology and 7Department of Computer 
Science, University of California, Berkeley, California, USA. Correspondence should be addressed to L.P. (lpachter@math.berkeley.edu).
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junction (Supplementary Table 1). Of the splice junctions spanned 
by fragment alignments, 70% were present in transcripts annotated 
by the UCSC, Ensembl or VEGA groups (known genes).

To recover the minimal set of transcripts supported by our frag-
ment alignments, we designed a comparative transcriptome assem-
bly algorithm. Expressed sequence tag (EST) assemblers such as 
PASA introduced the idea of collapsing alignments to transcripts 
on the basis of splicing compatibility17, and Dilworth’s theorem18 
has been used to assemble a parsimonious set of haplotypes from 
virus population sequencing reads19. Cufflinks extends these ideas, 
reducing the transcript assembly problem to finding a maximum 
matching in a weighted4 bipartite graph that represents com-
patibilities17 among fragments (Fig. 1a–c and Supplementary 
Methods, section 4). Noncoding RNAs20 and microRNAs21 have 
been reported to regulate cell differentiation and development, and 
coding genes are known to produce noncoding isoforms as a means 
of regulating protein levels through nonsense-mediated decay22. 
For these biologically motivated reasons, the assembler does not 
require that assembled transcripts contain an open reading frame 
(ORF). As Cufflinks does not make use of existing gene annotations 

during assembly, we validated the transcripts by first comparing 
individual time point assemblies to existing annotations.

We recovered a total of 13,692 known isoforms and 12,712 new iso-
forms of known genes. We estimate that 77% of the reads originated 
from previously known transcripts (Supplementary Table 2). Of the 
new isoforms, 7,395 (58%) contain novel splice junctions, with the 
remainder being novel combinations of known splicing outcomes; 
11,712 (92%) have an ORF, 8,752 of which end at an annotated stop 
codon. Although we sequenced deeply by current standards, 73% of 
the moderately abundant transcripts (15–30 expected fragments per 
kilobase of transcript per million fragments mapped, abbreviated 
FPKM; see below for further explanation) detected at the 60-h time 
point with three lanes of GAII transcriptome sequencing were fully 
recovered with just a single lane. Because distinguishing a full-length 
transcript from a partially assembled fragment is difficult, we con-
servatively excluded from further analyses the novel isoforms that 
were unique to a single time point. Out of the new isoforms, 3,724 
were present in multiple time points, and 581 were present at all 
time points; 6,518 (51%) of the new isoforms and 2,316 (62%) of 
the multiple time point novel isoforms were tiled by high-identity 

a

c

db

e

Map paired cDNA
fragment sequences

to genome
TopHat

Cufflinks

Spliced fragment
alignments

Abundance estimationAssembly
Mutually

incompatible
fragments

Transcript coverage
and compatibility

Fragment
length

distribution

Overlap graph

Maximum likelihood
abundances

Log-likelihood

Minimum path cover

Transcripts

Transcripts
and their
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3

3

1

1

2

2

Figure 1 Overview of Cufflinks. (a) The algorithm takes as input cDNA 
fragment sequences that have been aligned to the genome by software 
capable of producing spliced alignments, such as TopHat. (b–e) With 
paired-end RNA-Seq, Cufflinks treats each pair of fragment reads as 
a single alignment. The algorithm assembles overlapping ‘bundles’ of 
fragment alignments (b,c) separately, which reduces running time and 
memory use, because each bundle typically contains the fragments from 
no more than a few genes. Cufflinks then estimates the abundances of 
the assembled transcripts (d,e). The first step in fragment assembly is 
to identify pairs of ‘incompatible’ fragments that must have originated 
from distinct spliced mRNA isoforms (b). Fragments are connected in an 
‘overlap graph’ when they are compatible and their alignments overlap 
in the genome. Each fragment has one node in the graph, and an edge, 
directed from left to right along the genome, is placed between each 
pair of compatible fragments. In this example, the yellow, blue and red 
fragments must have originated from separate isoforms, but any other 
fragment could have come from the same transcript as one of these 
three. Isoforms are then assembled from the overlap graph (c). Paths 
through the graph correspond to sets of mutually compatible fragments 
that could be merged into complete isoforms. The overlap graph here can 
be minimally ‘covered’ by three paths (shaded in yellow, blue and red), 
each representing a different isoform. Dilworth’s Theorem states that 
the number of mutually incompatible reads is the same as the minimum 
number of transcripts needed to ‘explain’ all the fragments. Cufflinks 
implements a proof of Dilworth’s Theorem that produces a minimal set 
of paths that cover all the fragments in the overlap graph by finding the 
largest set of reads with the property that no two could have originated 
from the same isoform. Next, transcript abundance is estimated  
(d). Fragments are matched (denoted here using color) to the transcripts 
from which they could have originated. The violet fragment could have 
originated from the blue or red isoform. Gray fragments could have come 
from any of the three shown. Cufflinks estimates transcript abundances 
using a statistical model in which the probability of observing each 
fragment is a linear function of the abundances of the transcripts from 
which it could have originated. Because only the ends of each fragment 
are sequenced, the length of each may be unknown. Assigning a fragment 
to different isoforms often implies a different length for it. Cufflinks 
incorporates the distribution of fragment lengths to help assign fragments 
to isoforms. For example, the violet fragment would be much longer, and 
very improbable according to the Cufflinks model, if it were to come from 
the red isoform instead of the blue isoform. Last, the program numerically 
maximizes a function that assigns a likelihood to all possible sets of 
relative abundances of the yellow, red and blue isoforms ( 1, 2, 3)  
(e), producing the abundances that best explain the observed fragments, 
shown as a pie chart.
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junction (Supplementary Table 1). Of the splice junctions spanned 
by fragment alignments, 70% were present in transcripts annotated 
by the UCSC, Ensembl or VEGA groups (known genes).

To recover the minimal set of transcripts supported by our frag-
ment alignments, we designed a comparative transcriptome assem-
bly algorithm. Expressed sequence tag (EST) assemblers such as 
PASA introduced the idea of collapsing alignments to transcripts 
on the basis of splicing compatibility17, and Dilworth’s theorem18 
has been used to assemble a parsimonious set of haplotypes from 
virus population sequencing reads19. Cufflinks extends these ideas, 
reducing the transcript assembly problem to finding a maximum 
matching in a weighted4 bipartite graph that represents com-
patibilities17 among fragments (Fig. 1a–c and Supplementary 
Methods, section 4). Noncoding RNAs20 and microRNAs21 have 
been reported to regulate cell differentiation and development, and 
coding genes are known to produce noncoding isoforms as a means 
of regulating protein levels through nonsense-mediated decay22. 
For these biologically motivated reasons, the assembler does not 
require that assembled transcripts contain an open reading frame 
(ORF). As Cufflinks does not make use of existing gene annotations 

during assembly, we validated the transcripts by first comparing 
individual time point assemblies to existing annotations.

We recovered a total of 13,692 known isoforms and 12,712 new iso-
forms of known genes. We estimate that 77% of the reads originated 
from previously known transcripts (Supplementary Table 2). Of the 
new isoforms, 7,395 (58%) contain novel splice junctions, with the 
remainder being novel combinations of known splicing outcomes; 
11,712 (92%) have an ORF, 8,752 of which end at an annotated stop 
codon. Although we sequenced deeply by current standards, 73% of 
the moderately abundant transcripts (15–30 expected fragments per 
kilobase of transcript per million fragments mapped, abbreviated 
FPKM; see below for further explanation) detected at the 60-h time 
point with three lanes of GAII transcriptome sequencing were fully 
recovered with just a single lane. Because distinguishing a full-length 
transcript from a partially assembled fragment is difficult, we con-
servatively excluded from further analyses the novel isoforms that 
were unique to a single time point. Out of the new isoforms, 3,724 
were present in multiple time points, and 581 were present at all 
time points; 6,518 (51%) of the new isoforms and 2,316 (62%) of 
the multiple time point novel isoforms were tiled by high-identity 
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Figure 1 Overview of Cufflinks. (a) The algorithm takes as input cDNA 
fragment sequences that have been aligned to the genome by software 
capable of producing spliced alignments, such as TopHat. (b–e) With 
paired-end RNA-Seq, Cufflinks treats each pair of fragment reads as 
a single alignment. The algorithm assembles overlapping ‘bundles’ of 
fragment alignments (b,c) separately, which reduces running time and 
memory use, because each bundle typically contains the fragments from 
no more than a few genes. Cufflinks then estimates the abundances of 
the assembled transcripts (d,e). The first step in fragment assembly is 
to identify pairs of ‘incompatible’ fragments that must have originated 
from distinct spliced mRNA isoforms (b). Fragments are connected in an 
‘overlap graph’ when they are compatible and their alignments overlap 
in the genome. Each fragment has one node in the graph, and an edge, 
directed from left to right along the genome, is placed between each 
pair of compatible fragments. In this example, the yellow, blue and red 
fragments must have originated from separate isoforms, but any other 
fragment could have come from the same transcript as one of these 
three. Isoforms are then assembled from the overlap graph (c). Paths 
through the graph correspond to sets of mutually compatible fragments 
that could be merged into complete isoforms. The overlap graph here can 
be minimally ‘covered’ by three paths (shaded in yellow, blue and red), 
each representing a different isoform. Dilworth’s Theorem states that 
the number of mutually incompatible reads is the same as the minimum 
number of transcripts needed to ‘explain’ all the fragments. Cufflinks 
implements a proof of Dilworth’s Theorem that produces a minimal set 
of paths that cover all the fragments in the overlap graph by finding the 
largest set of reads with the property that no two could have originated 
from the same isoform. Next, transcript abundance is estimated  
(d). Fragments are matched (denoted here using color) to the transcripts 
from which they could have originated. The violet fragment could have 
originated from the blue or red isoform. Gray fragments could have come 
from any of the three shown. Cufflinks estimates transcript abundances 
using a statistical model in which the probability of observing each 
fragment is a linear function of the abundances of the transcripts from 
which it could have originated. Because only the ends of each fragment 
are sequenced, the length of each may be unknown. Assigning a fragment 
to different isoforms often implies a different length for it. Cufflinks 
incorporates the distribution of fragment lengths to help assign fragments 
to isoforms. For example, the violet fragment would be much longer, and 
very improbable according to the Cufflinks model, if it were to come from 
the red isoform instead of the blue isoform. Last, the program numerically 
maximizes a function that assigns a likelihood to all possible sets of 
relative abundances of the yellow, red and blue isoforms ( 1, 2, 3)  
(e), producing the abundances that best explain the observed fragments, 
shown as a pie chart.



19

512 VOLUME 28 NUMBER 5 MAY 2010 NATURE BIOTECHNOLOGY

L E T T E R S

junction (Supplementary Table 1). Of the splice junctions spanned 
by fragment alignments, 70% were present in transcripts annotated 
by the UCSC, Ensembl or VEGA groups (known genes).

To recover the minimal set of transcripts supported by our frag-
ment alignments, we designed a comparative transcriptome assem-
bly algorithm. Expressed sequence tag (EST) assemblers such as 
PASA introduced the idea of collapsing alignments to transcripts 
on the basis of splicing compatibility17, and Dilworth’s theorem18 
has been used to assemble a parsimonious set of haplotypes from 
virus population sequencing reads19. Cufflinks extends these ideas, 
reducing the transcript assembly problem to finding a maximum 
matching in a weighted4 bipartite graph that represents com-
patibilities17 among fragments (Fig. 1a–c and Supplementary 
Methods, section 4). Noncoding RNAs20 and microRNAs21 have 
been reported to regulate cell differentiation and development, and 
coding genes are known to produce noncoding isoforms as a means 
of regulating protein levels through nonsense-mediated decay22. 
For these biologically motivated reasons, the assembler does not 
require that assembled transcripts contain an open reading frame 
(ORF). As Cufflinks does not make use of existing gene annotations 

during assembly, we validated the transcripts by first comparing 
individual time point assemblies to existing annotations.

We recovered a total of 13,692 known isoforms and 12,712 new iso-
forms of known genes. We estimate that 77% of the reads originated 
from previously known transcripts (Supplementary Table 2). Of the 
new isoforms, 7,395 (58%) contain novel splice junctions, with the 
remainder being novel combinations of known splicing outcomes; 
11,712 (92%) have an ORF, 8,752 of which end at an annotated stop 
codon. Although we sequenced deeply by current standards, 73% of 
the moderately abundant transcripts (15–30 expected fragments per 
kilobase of transcript per million fragments mapped, abbreviated 
FPKM; see below for further explanation) detected at the 60-h time 
point with three lanes of GAII transcriptome sequencing were fully 
recovered with just a single lane. Because distinguishing a full-length 
transcript from a partially assembled fragment is difficult, we con-
servatively excluded from further analyses the novel isoforms that 
were unique to a single time point. Out of the new isoforms, 3,724 
were present in multiple time points, and 581 were present at all 
time points; 6,518 (51%) of the new isoforms and 2,316 (62%) of 
the multiple time point novel isoforms were tiled by high-identity 
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capable of producing spliced alignments, such as TopHat. (b–e) With 
paired-end RNA-Seq, Cufflinks treats each pair of fragment reads as 
a single alignment. The algorithm assembles overlapping ‘bundles’ of 
fragment alignments (b,c) separately, which reduces running time and 
memory use, because each bundle typically contains the fragments from 
no more than a few genes. Cufflinks then estimates the abundances of 
the assembled transcripts (d,e). The first step in fragment assembly is 
to identify pairs of ‘incompatible’ fragments that must have originated 
from distinct spliced mRNA isoforms (b). Fragments are connected in an 
‘overlap graph’ when they are compatible and their alignments overlap 
in the genome. Each fragment has one node in the graph, and an edge, 
directed from left to right along the genome, is placed between each 
pair of compatible fragments. In this example, the yellow, blue and red 
fragments must have originated from separate isoforms, but any other 
fragment could have come from the same transcript as one of these 
three. Isoforms are then assembled from the overlap graph (c). Paths 
through the graph correspond to sets of mutually compatible fragments 
that could be merged into complete isoforms. The overlap graph here can 
be minimally ‘covered’ by three paths (shaded in yellow, blue and red), 
each representing a different isoform. Dilworth’s Theorem states that 
the number of mutually incompatible reads is the same as the minimum 
number of transcripts needed to ‘explain’ all the fragments. Cufflinks 
implements a proof of Dilworth’s Theorem that produces a minimal set 
of paths that cover all the fragments in the overlap graph by finding the 
largest set of reads with the property that no two could have originated 
from the same isoform. Next, transcript abundance is estimated  
(d). Fragments are matched (denoted here using color) to the transcripts 
from which they could have originated. The violet fragment could have 
originated from the blue or red isoform. Gray fragments could have come 
from any of the three shown. Cufflinks estimates transcript abundances 
using a statistical model in which the probability of observing each 
fragment is a linear function of the abundances of the transcripts from 
which it could have originated. Because only the ends of each fragment 
are sequenced, the length of each may be unknown. Assigning a fragment 
to different isoforms often implies a different length for it. Cufflinks 
incorporates the distribution of fragment lengths to help assign fragments 
to isoforms. For example, the violet fragment would be much longer, and 
very improbable according to the Cufflinks model, if it were to come from 
the red isoform instead of the blue isoform. Last, the program numerically 
maximizes a function that assigns a likelihood to all possible sets of 
relative abundances of the yellow, red and blue isoforms ( 1, 2, 3)  
(e), producing the abundances that best explain the observed fragments, 
shown as a pie chart.
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Explicitly, in terms of the parameters ρ, Equation (23) simplifies to Equation (8)
but we will see in the next section how the maximum likelihood estimates ρ̂ are most
conveniently obtained by first finding β̂ and γ̂ using Equation (23).

We note that it is biologically meaningful to include prior distributions on σ and τ
that reflect the inherent stochasticity and resulting variability of transcription in a cell.
This will be an interesting direction for further research as more RNA-Seq data (with
replicates) becomes available allowing for the determination of biologically meaningful
priors. In particular, it seems plausible that specific isoform abundances may vary con-
siderably and randomly within cells from a single tissue and that this may be important
in studying differential splicing. We mention to this to clarify that in this paper, the con-
fidence intervals we report represent the variability in the maximum likelihood estimates
σ̂j and τ̂ k

j , and are not the variances of prior distributions.

3.3. Estimation of parameters. We begin with a discussion of identifiability of our
model. Identifiability refers to the injectivity of the model, i.e.,

(24) if Prρ1(r) = Prρ2(r) ∀r ∈ R, then ρ1 = ρ2.

The identifiability of RNA-Seq models was discussed in [9], where a standard analysis
for linear models is applied to RNA-Seq (for another related biological example, see
[20] which discusses identifiability of haplotypes in mixed populations from genotype
data). The results in these papers apply to our model. For completeness we review the

Nature Biotechnology: doi:10.1038/nbt.1621
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EST alignments or matched RefSeq isoforms from other organisms, 
and end point RT-PCR experiments confirmed new isoforms in genes 
of interest (Supplementary Table 3). We concluded that most of the 
unannotated transcripts we found are in the myogenic transcriptome 
and that the mouse annotation remains incomplete.

To estimate transcript abundances, we first selected a set of 11,079 
genes containing 17,416 high-confidence isoforms (Supplementary 
Data 1). Of these, 13,692 (79%) were known, and the remaining 3,724 
(21%) were novel isoforms of known genes present in multiple time 
points. We then developed a statistical model specifying the probabil-
ity of observing an RNA-Seq fragment. The model is parameterized 
by the abundances of these transcripts (Fig. 1d–f and Supplementary 
Methods, section 3). Cufflinks’ model allows for the probabilistic 
deconvolution of RNA-Seq fragment densities to account for cases in 
which genome alignments of fragments do not uniquely correspond 
to source transcripts. The model incorporates minimal assumptions23 
about the sequencing experiment, and it extends the unpaired read 
model of Jiang and Wong8 to the paired-end case.

Abundances were reported in FPKM. In these units, the relative 
abundances of transcripts are described in terms of the expected bio-
logical objects (fragments) observed from an RNA-Seq experiment, 
which in the future may not be represented by single or paired reads.  
Confidence intervals for estimates were obtained using a Bayesian 
inference method based on importance sampling from the posterior 
distribution. Abundances of spiked control 
sequences (R2 = 0.99) and benchmarks with 
simulated data (R2 = 0.96) revealed that 
Cufflinks’ abundance estimates are highly 
accurate. The inclusion of novel isoforms 
of known genes during abundance estima-
tion had a strong impact on the estimates of 
known isoforms in many genes (R2 = 0.90), 
highlighting the importance of coupling 
transcript discovery together with abun-
dance estimation.

We identified 7,770 genes and 10,480 iso-
forms undergoing significant abundance 
changes between some successive pair of 

time points (expected false discovery rate, abbreviated FDR, of <5%). 
Many genes show substantial transcript-level dynamics that are not 
reflected in their overall expression patterns (Supplementary Data 2).  
For example, Myc (Fig. 2a), a proto-oncogene that is known to be 
transcriptionally and post-transcriptionally regulated during myo-
genesis24, is downregulated overall during the time course, and, 
although isoforms A and B follow this pattern, isoform C has a more 
complex expression pattern (Fig. 2b).

We noted that many genes showed switching between major and 
minor transcripts; furthermore, some contained isoforms with 
muscle-specific functions, such as tropomyosin I and II, which dis-
play a marked switch in isoform dominance upon differentiation 
(Supplementary Methods, appendix b). However, many genes fea-
tured dynamics involving several isoforms with behavior too complex 
to be deemed ‘switching’.

In light of these observations, we classified the patterns of expres-
sion dynamics for transcripts, assigning them one of four ‘trajectories’ 
based on their expression curves being flat, increasing, decreasing or 
mixed (see Online Methods). On the basis of this trajectory classifi-
cation, a total of 1,634 genes were found to have multiple isoforms 
with different trajectories in the time course, and we hypothesized 
that differential promoter preference and differential splicing were 
responsible for the divergent patterns.

To explore the impact of regulation on mRNA output and to check 
whether it could explain the variability of trajectories, we grouped 
transcripts by their TSS instead of just by gene. Changes in the relative 
abundances of mRNAs spliced from the same pre-mRNA transcript are 
by definition post-transcriptional, so this grouping effectively discrimi-
nated changes in mRNA output associated with differential transcription 
from changes associated with differential post-transcriptional  
processing. Of the 3,486 genes in our high-confidence set with iso-
forms that shared a common TSS, 41% had TSS groups containing 
different isoform trajectories. Summing the expressions of isoforms 
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EST alignments or matched RefSeq isoforms from other organisms, 
and end point RT-PCR experiments confirmed new isoforms in genes 
of interest (Supplementary Table 3). We concluded that most of the 
unannotated transcripts we found are in the myogenic transcriptome 
and that the mouse annotation remains incomplete.

To estimate transcript abundances, we first selected a set of 11,079 
genes containing 17,416 high-confidence isoforms (Supplementary 
Data 1). Of these, 13,692 (79%) were known, and the remaining 3,724 
(21%) were novel isoforms of known genes present in multiple time 
points. We then developed a statistical model specifying the probabil-
ity of observing an RNA-Seq fragment. The model is parameterized 
by the abundances of these transcripts (Fig. 1d–f and Supplementary 
Methods, section 3). Cufflinks’ model allows for the probabilistic 
deconvolution of RNA-Seq fragment densities to account for cases in 
which genome alignments of fragments do not uniquely correspond 
to source transcripts. The model incorporates minimal assumptions23 
about the sequencing experiment, and it extends the unpaired read 
model of Jiang and Wong8 to the paired-end case.

Abundances were reported in FPKM. In these units, the relative 
abundances of transcripts are described in terms of the expected bio-
logical objects (fragments) observed from an RNA-Seq experiment, 
which in the future may not be represented by single or paired reads.  
Confidence intervals for estimates were obtained using a Bayesian 
inference method based on importance sampling from the posterior 
distribution. Abundances of spiked control 
sequences (R2 = 0.99) and benchmarks with 
simulated data (R2 = 0.96) revealed that 
Cufflinks’ abundance estimates are highly 
accurate. The inclusion of novel isoforms 
of known genes during abundance estima-
tion had a strong impact on the estimates of 
known isoforms in many genes (R2 = 0.90), 
highlighting the importance of coupling 
transcript discovery together with abun-
dance estimation.

We identified 7,770 genes and 10,480 iso-
forms undergoing significant abundance 
changes between some successive pair of 

time points (expected false discovery rate, abbreviated FDR, of <5%). 
Many genes show substantial transcript-level dynamics that are not 
reflected in their overall expression patterns (Supplementary Data 2).  
For example, Myc (Fig. 2a), a proto-oncogene that is known to be 
transcriptionally and post-transcriptionally regulated during myo-
genesis24, is downregulated overall during the time course, and, 
although isoforms A and B follow this pattern, isoform C has a more 
complex expression pattern (Fig. 2b).

We noted that many genes showed switching between major and 
minor transcripts; furthermore, some contained isoforms with 
muscle-specific functions, such as tropomyosin I and II, which dis-
play a marked switch in isoform dominance upon differentiation 
(Supplementary Methods, appendix b). However, many genes fea-
tured dynamics involving several isoforms with behavior too complex 
to be deemed ‘switching’.

In light of these observations, we classified the patterns of expres-
sion dynamics for transcripts, assigning them one of four ‘trajectories’ 
based on their expression curves being flat, increasing, decreasing or 
mixed (see Online Methods). On the basis of this trajectory classifi-
cation, a total of 1,634 genes were found to have multiple isoforms 
with different trajectories in the time course, and we hypothesized 
that differential promoter preference and differential splicing were 
responsible for the divergent patterns.

To explore the impact of regulation on mRNA output and to check 
whether it could explain the variability of trajectories, we grouped 
transcripts by their TSS instead of just by gene. Changes in the relative 
abundances of mRNAs spliced from the same pre-mRNA transcript are 
by definition post-transcriptional, so this grouping effectively discrimi-
nated changes in mRNA output associated with differential transcription 
from changes associated with differential post-transcriptional  
processing. Of the 3,486 genes in our high-confidence set with iso-
forms that shared a common TSS, 41% had TSS groups containing 
different isoform trajectories. Summing the expressions of isoforms 
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differentiation at 0 h give way to post-transcriptional effects later in the 
time course, as isoform A is eliminated.
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sharing a TSS produces the trajectory for their primary transcript, and 
we identified 401 (48%) genes with multiple distinct primary tran-
script trajectories. However, trajectory classification was not precise 
enough to prioritize further investigation into individual genes and 
could not form the basis for statistical significance testing.

We therefore formalized and quantified divergent expression pat-
terns of isoforms within and between TSS groups with an information- 
theoretic metric derived from the Jensen-Shannon divergence. With this 
metric, relative transcript abundances are represented as points along a 
logarithmic spiral in a real Hilbert space25, and as a result the distance 
between points measures the extent of change in relative expression. 
Quantification of expression change in this way revealed significant 
(FDR < 5%) differential transcriptional regulation and splicing in 882 
of 3,486 (25%) and 273 of 843 (32%) candidate genes, respectively, with 
70 genes showing both types of differential regulation (Supplementary 
Table 4). Myc (Fig. 2a,b) undergoes a shift in transcriptional regulation 
of transcript abundances to post-transcriptional control of abundances  
(Fig. 2c) between 60 h and 90 h, as myocytes are beginning to fuse  
into myotubes.

Focusing on the genes with significant promoter and isoform 
changes (FDR < 5%), we noted that in many cases changes in rela-
tive abundance reflected switch-like events in which there was an 
inversion of the dominant primary transcript. For example, in the 
gene encoding FHL3, a transcriptional regulator recently reported 
to inhibit myogenesis26, Cufflinks assembled the known isoform and 
another with a novel start site. We validated the 5  exon of this isoform 
along with other novel start sites and splicing events by form-specific 
RT-PCR (Fig. 3a and Supplementary Methods, section 4). Limiting 
analysis to known isoforms would have produced an incorrect abun-
dance estimate for the known isoform of FHL3. Moreover, the novel 
isoform is dominant before differentiation, so this potentially impor-
tant differentiation-associated promoter switch would have been 
missed (Fig. 3b). In total, we tested and validated 153 of 185 puta-
tive novel TSSs by comparison against TAF1 and RNA polymerase II 
chromatin immunoprecipitation (ChIP)-Seq peaks.

We also observed switches in the major isoform of alternatively 
spliced genes. In total, 10% of multi-promoter genes featured a 
switch in major primary transcript, and 7% of alternatively spliced 
primary transcripts switched major isoforms. We concluded that not 
only does promoter switching have a substantial impact on mRNA 
output, but also many genes show evidence of post-transcriptionally 
induced expression changes, supporting a role for dynamic splicing 
regulation in myogenesis. A key question is whether genes that show 
divergent expression patterns of isoforms are differentially regulated 
in a particular system because they have isoforms that are functionally 
specialized for that system. Of the genes undergoing transcriptional 
or post-transcriptional isoform switches, 26% and 24%, respec-
tively, encode multiple distinct proteins according to annotation.  

We excluded genes with novel isoforms from the coding sequence 
analysis, so this fraction probably underestimates the impact of 
differential regulation on coding potential. We thus speculate that 
differential RNA level isoform regulation, whether transcriptional, 
post-transcriptional or mixed in underlying mechanism, suggests 
functional specialization of the isoforms in many genes.

Although Cufflinks was designed to investigate transcriptional and 
splicing regulation in this experiment, it is applicable to a broad range 
of RNA-Seq studies (Fig. 4). The open-source software runs on com-
monly available and inexpensive hardware, making it accessible to any 
researcher using RNA-Seq data. We are currently exploring the use 
of the Cufflinks assembler to annotate genomes of newly sequenced 
organisms and to quantify the effect of various mechanisms of gene 
regulation on expression. When coupled with assays of upstream 
regulatory activity, such as chromatin-state mapping or promoter 
occupancy, Cufflinks should help unveil the range of mechanisms 
governing RNA manufacture and processing.

METHODS
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/naturebiotechnology/.

Accession code. NCBI Gene Expression Omnibus: The data dis-
cussed in this publication have been deposited with accession number 
GSE20846.

Note: Supplementary information is available on the Nature Biotechnology website.
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Figure 4 Robustness of assembly and abundance estimation as a function 
of expression level and depth of sequencing. Subsets of the full 60-h 
read set were mapped and assembled with TopHat and Cufflinks, and 
the resulting assemblies were compared for structural and abundance 
agreement with the full 60-h assembly. Colored lines show the results 
obtained at different depths of sequencing in the full assembly; for 
example, the light blue line tracks the performance for transcripts with 
FPKM >60. (a) The fraction of transcript fragments fully recovered 
increases with additional sequencing data, although nearly 75% of 
moderately expressed transcripts ( 15 FPKM) are recovered with fewer 
than 40 million 75-bp paired-end reads (20 million fragments), a fraction 
of the data generated by a single run of the sequencer used in this experiment. (b) Abundance estimates are similarly robust. At 40 million reads, 
transcripts determined to be moderately expressed using all 60-h reads were estimated at within 15% of their final FPKM values.



Cufflinks

Assembles	  transcripts	  and	  quanMfies	  them

Input:	  aligned	  RNA-‐Seq	  reads,	  usually	  from	  TopHat,	  but	  
can	  be	  from	  BowMe	  or	  BWA

Outputs
‣ assembled	  transcripts	  (GTF)
‣ genes’	  and	  transcripts’	  coordinates,	  expression	  levels
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General	  Feature	  Format	  (GFF)
Gene	  Transfer	  Format	  (GTF)

Generic	  format	  for	  specifying	  connected	  intervals	  
on	  the	  genome
‣ interval	  can	  be	  transcript,	  exon,	  TSS,	  UTR,	  etc.

‣ feature	  spread	  across	  mulMple	  lines
‣ anributes	  at	  the	  end	  of	  line

chr22 Cufflinks transcript 29189653 29192232 1000 - .

gene_id "CUFF.1"; transcript_id "CUFF.1.1"; FPKM 
"296772.2359645074"; frac "0.660032"; conf_lo "289221.149392"; 
conf_hi "304323.322538"; cov "289.709057";
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Goal:	  Create	  Reasonable	  Transcript	  
Assembly	  for	  XBP1	  
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Cufflinks

Run	  Cufflinks	  with	  default	  parameters
‣ add	  assembled	  transcripts	  to	  visualizaMon

Try	  reference-‐guided	  opMon
‣ add	  to	  visualizaMon

Try	  lowering	  minimum	  isoform	  fracMon	  and/or	  pre-‐
mrna	  fracMons
‣ add	  to	  visualizaMon
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Goal:	  Filter	  to	  Remove	  Assembly	  ArMfacts
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Filtering

Developing	  filter	  criteria
‣ use	  visualizaMon

‣ mouse	  over	  to	  see	  informaMon	  and/or	  use	  dynamic	  
filters

‣ can	  “run	  on	  complete	  dataset”

Galaxy	  tools	  for	  filtering
‣ Filter	  via	  column	  using	  expression

‣ Filter	  GFF	  data	  by	  anribute
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Goal:	  Use	  Workflow	  to	  Automate	  
Transcript	  Assembly	  and	  Filtering
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Workflows

Create	  a	  workflow	  with	  the	  following	  steps:
‣ Cufflinks	  with	  reference-‐guided	  opMon

‣ Filter	  with	  condiMon	  Score	  >=	  224
‣ Filter	  by	  GFF	  a6ribute	  with	  condiMon	  FPKM	  >	  3

Run	  workflow	  on	  mapped	  reads	  from	  brain
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Cuffmerge/compare

Goals
‣ generate	  complete	  list	  of	  transcripts	  for	  a	  set	  of	  transcripts	  

‣ compare	  assembled	  transcripts	  to	  a	  reference	  annotaMon

Inputs:	  assembled	  transcripts	  from	  Cufflinks

Outputs:
‣ Transcripts	  Combined	  File

‣ Transcripts	  Accuracy	  File
‣ Transcripts	  Tracking	  Files
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Cuffmerge

Run	  and	  visualize	  output	  :)
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Cuffdiff

Goals
‣ differenMal	  expression	  tesMng
‣ transcript	  quanMficaMon

Inputs
‣ Combined	  set	  of	  transcripts
‣ mapped	  reads	  from	  2+	  samples

Outputs
‣ differenMal	  expression	  tests	  for	  transcripts,	  genes,	  splicing,	  
promoters,	  CDS

‣ quanMficaMon	  values	  for	  most	  elements
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Cuffdiff

Run	  it	  and	  start	  reading	  documenta<on	  :)
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Learning	  Galaxy

hnp://wiki.g2.bx.psu.edu/Learn

Galaxy	  101	  hnp://usegalaxy.org/galaxy101
Screencasts

Shared	  Pages,	  Histories	  &	  Workflows

Other	  Tutorials

Datasets

Tools

VisualizaMon

User	  Accounts

Search	  Galaxy	  content:	  hnp://galaxy.psu.edu/search/

Mailing	  lists:	  hnp://wiki.g2.bx.psu.edu/Mailing%20Lists
‣ galaxy-‐user	  for	  analysis	  quesMons
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