Galaxy Workshop

Stellenbosch University 6-7 September 2012

Dave Clements
Emory University

http://galaxyproject.org/

Acknowledgements 1

Fourie Joubert
Rouvay Roodt-Wilding
Oleg Reva
Anelda Van der Walt

Stellenbosch University University of Pretoria

Acknowledgements 2

Dannon Baker Enis Afgan

and

the rest of the Galaxy Team

http://galaxyproject.org/wiki/Galaxy%20Team

Agenda: Day 1

Welcome, Basic Analysis

Basic analyses into Reusable Workflows

Galaxy Project Overview

NGS Analysis I: Through Tophat

A Simple Change ...

Persistence, Sharing, and Publishing

NGS Analysis II: Cufflinks, Cuffdiff

Visualization and visual analytics

Coffee and lunch breaks throughout the day

On Wiki: Documents/Presentations/2012_Stellenbosch...

Goals for this workshop

- 1. Introduce Galaxy
- 2. Introduce Common Bioinformatics Formats
- 3. Hands-on experience:
 - Load and integrate data from online resources
 - Perform bioinformatics analysis with Galaxy
 - Save, share, describe and publish your analysis
 - Visualize your results

This workshop will not cover details of how the tools are implemented or new algorithm designs or which assembler or mapper or ... is best for you.

Hands On: Basic Analysis

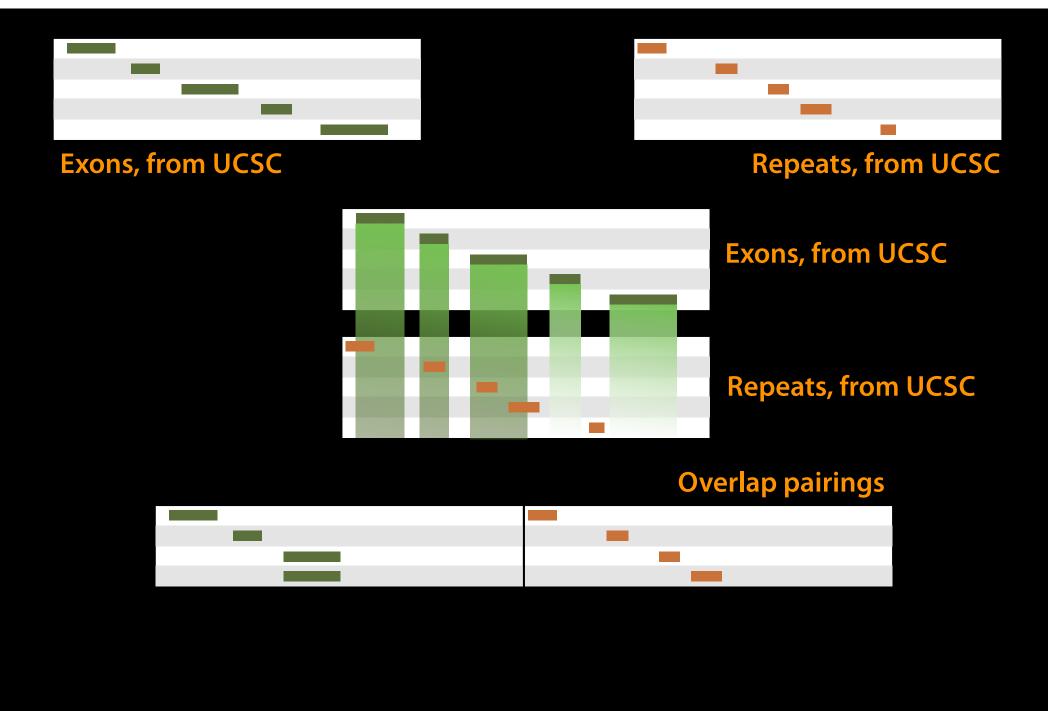
On pig chromosome 18, which coding exons have the most repeats in them?

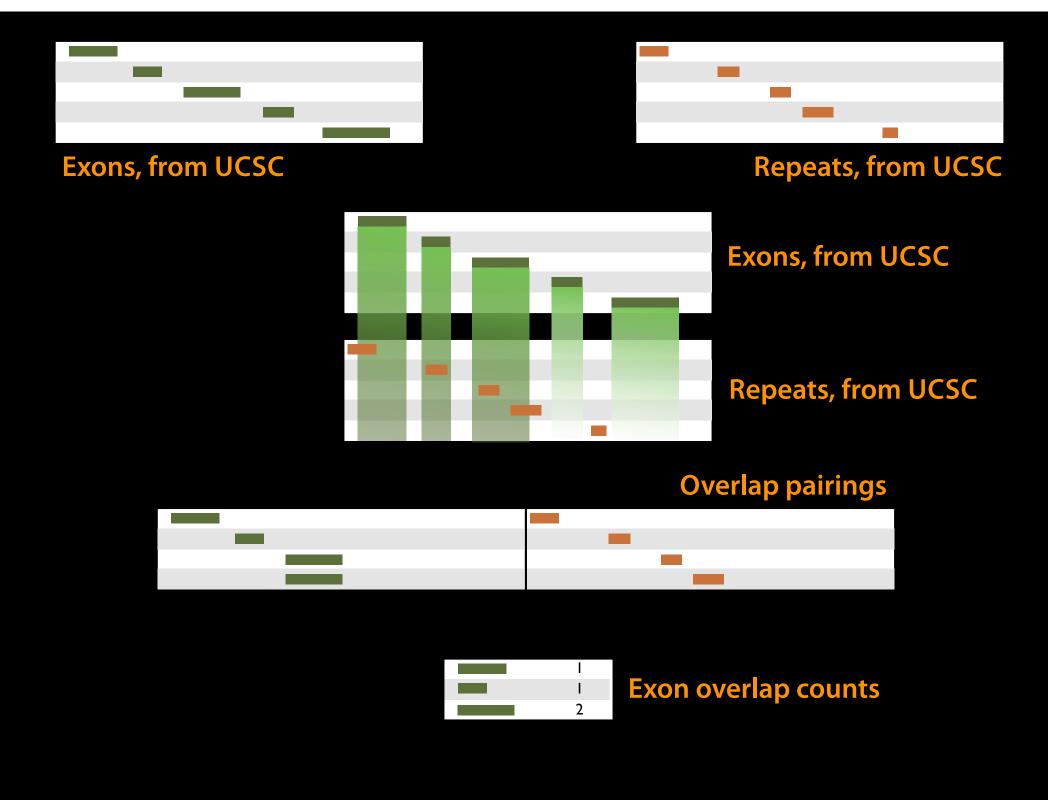
http://bit.ly/SUNgray

http://bit.ly/SUNmaroon

Repetitious Pigs: A Rough Plan

- Get some data (and explain BED)
 - Coding exons on chromosome 18
 - Repeats on chromosome 18
- Mess with it (and explain Galaxy operations)
 - Identify which exons have repeats
 - Count repeats per exon
- Visualize our results


(~ http://usegalaxy.org/galaxy101)



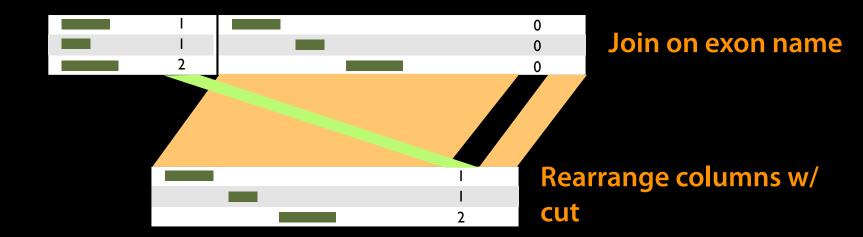
Exons, from UCSC

Repeats, from UCSC

Exon overlap counts

Exons, from UCSC

Exon overlap counts


Exons, from UCSC

		0	
	_	0	Join on exon name
2		0	

Exons, from UCSC

Agenda: Day 1

Welcome, Basic Analysis

Basic analyses into Reusable Workflows

Galaxy Project Overview

NGS Analysis I: Through Tophat

A Simple Change ...

Persistence, Sharing, and Publishing

NGS Analysis II: Cufflinks, Cuffdiff

Visualization and visual analytics

Coffee and lunch breaks throughout the day

Some Galaxy Terminology

Dataset:

Any input, output or intermediate set of data + metadata

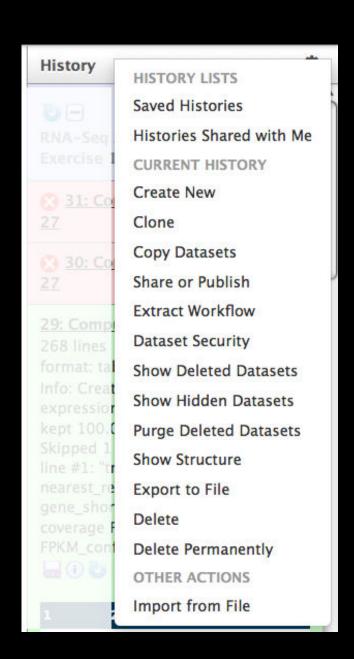
History:

A series of inputs, analysis steps, intermediate datasets, and outputs

Workflow:

A series of analysis steps

Can be repeated with different data


Reuse: Data & Analyses

Histories: Data

Datasets from previous histories can be imported into current one. Resume any previous history Current history can be cloned

Workflows: Analyses

Can be extracted from any history Allows you rerun analysis with different inputs, settings

Repetitious Pigs *History* → Reusable *Workflow?*

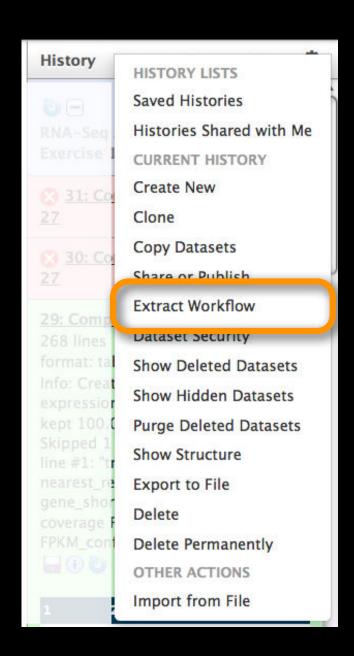
- The analysis we just finished was about
 - Pig chromosome 18
 - Overlap between exons and repeats
- But, ...
 - there is nothing inherently in the analysis about pigs, chromosomes, exons or repeats
 - It is a series of steps that sets the score of one set of features to the number of overlaps from another set of features.

Reuse: Create a generic Overlap Workflow

Extract Workflow from history

Create a workflow from this history. Edit it to make some things clearer.

Run / test it


Guided: rerun with same inputs

On your own:

Count # CpG islands in each exon Did that work?

On your own:

Count # of exons in each repeat Did that work? Why not? Edit workflow: doc assumptions

Agenda: Day 1

Welcome, Basic Analysis
Basic analyses into Reusable Workflows

Galaxy Project Overview

NGS Analysis I: Through Tophat

A Simple Change ...

Persistence, Sharing, and Publishing

NGS Analysis II: Cufflinks, Cuffdiff

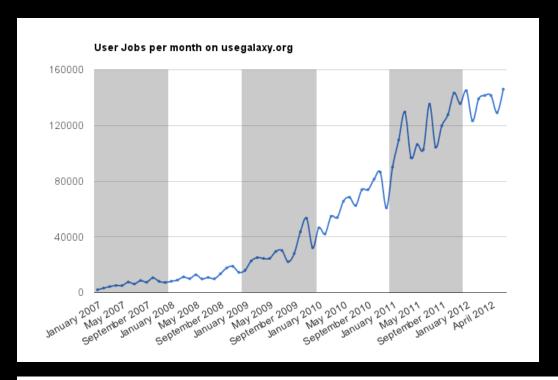
Visualization and visual analytics

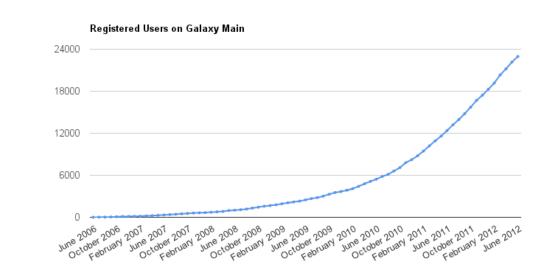
Coffee and lunch breaks throughout the day

The Motivation Slide

Next Generation Genomics: World Map of High-throughput Sequencers Nick Loman, James Hadfield

http://omicsmaps.com


What is Galaxy?


- A data analysis and integration tool
- A free (for everyone) web service integrating a wealth of tools, compute resources, terabytes of reference data and permanent storage
- Open source software that makes integrating your own tools and data and customizing for your own site simple
- These options result in several ways to use Galaxy

http://galaxyproject.org

http://usegalaxy.org (a.k.a Main)

- Public web site
- Anybody can use it
- Hundreds of tools
- Persistent
- + 500 users / month
- ~100 TB of user data
- ~140,000 jobs / month

http://bit.ly/gxystats

But, it's a big world

Main has lots of tools, storage, processor, users, ...

- But not all tools there are thousands and adding new tools is not taken lightly
- But not infinite storage and processors Main now has job limits and storage quotas

A centralized solution cannot scale to meet data analysis demands of the whole world

Scaling Galaxy

- Encourage local Galaxy instances and Galaxy on the cloud
- Support increasingly decentralized model and improve access to existing resources
- Focus on building infrastructure to enable the community to integrate and share tools, workflows, and best practices

Local Galaxy Instances http://getgalaxy.org

Galaxy is designed for local installation and customization

- Easily integrate new tools
- Easy to deploy and manage on nearly any (Unix) system

Public Galaxy Servers http://galaxyproject.org/wiki/PublicGalaxyServers

Interested in:

ChIP-chip and ChIP-seq?

✓ Cistrome

Statistical Analysis?

✓ Genomic Hyperbrowser

Sequence and tiling arrays?

✓ Oqtans

Text Mining?

✓ DBCLS Galaxy

Reasoning with ontologies?

√ GO Galaxy

Internally symmetric protein structures?

√ SymD

Got your own cluster?

 Move tool execution to other systems

 Galaxy works with any DRMAA compliant cluster job scheduler (which is most of them).

Distributed Resource Management Application API — www.dmraa.org

 Galaxy is just another client to your scheduler.

Galaxy CloudMan http://usegalaxy.org/cloud

- Start with a fully configured and populated (tools and data) Galaxy instance.
- Allows you to scale up and down your compute assets as needed.
- Someone else manages the data center.
- We are using this today

http://aws.amazon.com/education

Galaxy Community

Tool Shed
Mailing Lists (very active)
Screencasts
Events Calendar, News Feed
Community Wiki
Local Public Installs
CiteULike group, Mendeley mirror
Annual Community Meting

http://galaxyproject.org/wiki

GCC2013

Annual gathering of the Galaxy Community will happen in Oslo Norway next summer

3 days of learning, best practices, and research

http://galaxyproject.org/GCC2013

Participants: 69 in 2010 148 in 2011 203 in 2012 ??? in 2013

Other Upcoming Galaxy Events

Date	Topic/Event	Venue/Location	Contact
September 3-4		University of Pretoria, Pretoria, South Africa	
September 6-7	Galaxy Workshop	Stellenbosch University, Stellenbosch, South Africa	Dave Clements
September 10-11	Systems Bioinformatics Workshop	Institute for Systems Biology Seattle, Washington, United States	James Taylor
September 10-12	South African Genetics & Bioinformatics Society Conference		Dave Clements
	Assembling a cassava transcriptome using Galaxy on a high performance computing cluster	University of Stellenbosch, Stellenbosch, South Africa	Aobakwe Matshidiso
September 11-13	Facilitating Research on Heart Disease through SaaS	Bio-IT World Cloud Summit, San Francisco, California, United States	Raimond Winslov
September 11-14	Automated and reproducible analysis of NGS data (ARANGS12)	Instituto Gulbenkian de Ciência, Oeiras, Portugal	Rutger Vos, Darii London
September 27-29	Informatics Workshop	Beyond the Genome 2012, Harvard Medical School, Boston, Massachusetts	James Taylor
October 3	(first Swiss) Galaxy Workshop	SyBIT Tech Day, Bern, Switzerland	Hans-Rudolf Hotz
October 8-12	Extending High-Performance Computing Beyond its Traditional User Communities Workshop	eScience (eScience 2012) Chicago Illinois	
October 9-11	Tavaxy: A Workflow System with Taverna and Galaxy Capabilities and Cloud Computing Support	Bio-IT World Europe, Vienna, Austria	Mohamed Abouelhoda
October 31 -	Computaional & Comparative Genomics Course	Cold Spring Harbor Laboratory, New York, United	William Pearson,

http://galaxyproject.org/wiki/Events

Galaxy URLs to Remember

http://galaxyproject.org

http://usegalaxy.org

http://getgalaxy.org

Agenda: Day 1

Welcome, Basic Analysis
Basic analyses into Reusable Workflows
Galaxy Project Overview
NGS Analysis I:Through Tophat
A Simple Change ...

Persistence, Sharing, and Publishing

NGS Analysis II: Cufflinks, Cuffdiff

Visualization and visual analytics

Coffee and lunch breaks throughout the day

RNA-seq Exercise

http://usegalaxy.org/u/jeremy/p/galaxy-rna-seq-analysis-exercise

http://bit.ly/gxyRNASEX

http://bit.ly/SUNgray

http://bit.ly/SUNmaroon

RNA-seq Exercise: A Plan

- Get input datasets; hg19, will mostly map to chr19
- Look at quality
- Trim as we see fit.
- Map the reads to the human reference using Tophat
- Run Cufflinks on Tophat output to assemble reads into transcripts
- Run Cuffdiff on Cufflinks output to see differential expression

http://bit.ly/gxyRNASEX

RNA-seq Exercise: A Plan

- Get input datasets; hg19, will mostly map to chr19
 - All datasets are FASTQ and from the Body Map
 2.0 project
 - What is FASTQ?
 - http://en.wikipedia.org/wiki/FASTQ_format

- Get input datasets; hg19, will mostly map to chr19
- Look at quality: Option 1
 - NGS QC and Manipulation → Compute Quality
 Statistics
 - NGS QC and Manipulation → Draw quality score boxplot
 - Gives you no control over how it is calculated or presented.

- Get input datasets; hg19, will mostly map to chr19
- Look at quality: Option 2
 - NGS QC and Manipulation → FastQ Summary
 Statistics
 - Graph / Display Data → Boxplot of quality statistics
 - Gives you a lot of control over what the box plot looks like, but no additional information

- Get input datasets; hg19, will mostly map to chr19
- Look at quality: Option 3
 - NGS QC and Manipulation → Fastqc
 - Gives you a lot a lot more information but no control over how it is calculated or presented.

- Get input datasets; hg19, will mostly map to chr19
- Look at quality
- Trim as we see fit: Option 1
 - NGS QC and Manipulation → FASTQ Trimmer by column
 - Trim same number of columns from every record
 - Can specify different trim for 5' and 3' ends

- Get input datasets; hg19, will mostly map to chr19
- Look at quality
- Trim Filter as we see fit: Option 2
 - NGS QC and Manipulation → Filter FASTQ reads
 by quality score and length
 - Keep or discard whole reads at a time
 - Can have different thresholds for different regions of the reads.
 - Keeps original read length.

- Get input datasets; hg19, will mostly map to chr19
- Look at quality
- Trim as we see fit: Option 3
 - NGS QC and Manipulation → FASTQ Quality
 Trimmer by sliding window
 - Trim from both ends, using sliding windows, until you hit a high-quality section.
 - Produces variable length reads

- Get input datasets; hg19, will mostly map to chr19
- Look at quality
- Trim as we see fit.
- Map the reads to the human reference using Tophat
 - Imagine pages and pages of discussion on the intricacies and pitfalls of RNA-seq mapping here.
 - Visualize results

Agenda: Day 1

Welcome, Basic Analysis
Basic analyses into Reusable Workflows
Galaxy Project Overview
NGS Analysis I:Through Tophat
A Simple Change ...

Persistence, Sharing, and Publishing NGS Analysis II: Cufflinks, Cuffdiff Visualization and visual analytics

Coffee and lunch breaks throughout the day

Hands On: Basic Analysis ... until you go insane

On pig chromosome 18, which coding exons (GTF format) have the most repeats (BED format) in them?

http://bit.ly/SUNgray http://bit.ly/SUNmaroon

Repetitious Pigs: GTF and BED

- Get the GTF from UCSC
 - Hmm: There is no "coding exons" choice w/ GTF

- Points we will eventually ponder
 - Do we care about coding exons versus exons?
 - Do we care about exon names, gene names, transcript names, or just coordinates?
 - Can the same approach even work with GTF?

Agenda: Day 1

Welcome, Basic Analysis
Basic analyses into Reusable Workflows

Galaxy Project Overview

NGS Analysis I: Through Tophat

A Simple Change ...

Persistence, Sharing, and Publishing

NGS Analysis II: Cufflinks, Cuffdiff

Visualization and visual analytics

Coffee and lunch breaks throughout the day

Some Galaxy Terminology

Dataset:

Any input, output or intermediate set of data + metadata

History:

A series of inputs, analysis steps, intermediate datasets, and outputs

Workflow:

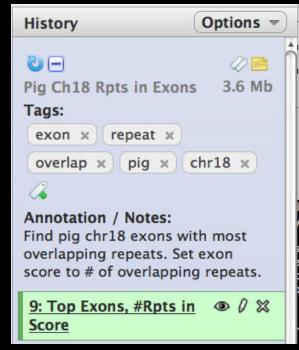
A series of analysis steps

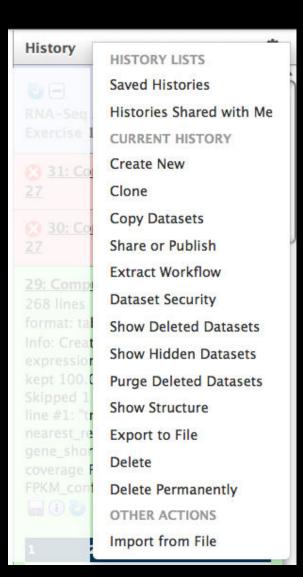
Can be repeated with different data

Share:

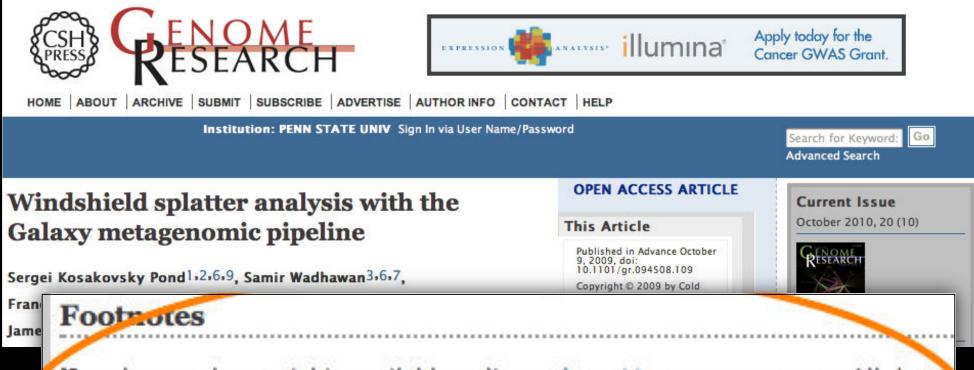
Make something available to someone else

Publish:


Make something available to everyone


Managing Histories and Datasets

Give every history and dataset a clear name


Datasets and
histories can also
have annotation and tags

Each history has an options/actions list

Sharing and Publishing Your Work

[Supplemental material is available online at http://www.genome.org. All data and tools described in this manuscript can be downloaded or used directly at http://galaxyproject.org. Exact analyses and workflows used in this paper are available at http://usegalaxy.org/u/aun1/p/windshield-splatter.]

Histories, workflows, visualizations and *pages* can be shared with others or published to the world.

http://usegalaxy.org/u/aun1/p/windshield-splatter

Sharing for Galaxy Administrators Too

Data Libraries

Make data easy to find

Genome Builds

Care about a particular subset of life?

Galaxy Tool Shed

Wrapping tools and datatypes

Galaxy Tool Shed

- Allow users to share "suites" containing tools, datatypes, workflows, sample data, and automated installation scripts for tool dependencies
- Integration with Galaxy instances to automate tool installation and updates

toolshed.g2.bx.psu.edu

Agenda: Day 1

Welcome, Basic Analysis

Basic analyses into Reusable Workflows

Galaxy Project Overview

NGS Analysis I: Through Tophat

A Simple Change ...

Persistence, Sharing, and Publishing

NGS Analysis II: Cufflinks, Cuffdiff

Visualization and visual analytics

Coffee and lunch breaks throughout the day

- ...
- Trim as we see fit.
- Map the reads to the human reference using Tophat
- Run Cufflinks on Tophat output to assemble reads into transcripts
 - Imagine pages and pages of discussion on the intricacies and pitfalls of RNA-seq transcript prediction here.

• ...

- Map the reads to the human reference using Tophat
- Run Cufflinks on Tophat output to assemble reads into transcripts
 - Imagine pages and pages of discussion on the intricacies and pitfalls of RNA-seq transcript prediction here.
 - Visualize it

- ...
- Run Cufflinks on Tophat output to assemble reads into transcripts
- Run Cuffdiff on Cufflinks output to see differential expression
 - Imagine pages and pages of discussion on the intricacies and pitfalls of RNA-seq transcript prediction here.

Two RNA-seq Papers

NATURE METHODS | REVIEW

Computational methods for transcriptome annotation and quantification using RNA-seq

Manuel Garber, Manfred G Grabherr, Mitchell Guttman & Cole Trapnell

Affiliations | Corresponding author

Nature Methods 8, 469–477 (2011) | doi:10.1038/nmeth.1613 Published online 27 May 2011 | Corrected online 15 June 2011

NATURE PROTOCOLS | PROTOCOL

Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks

Cole Trapnell, Adam Roberts, Loyal Goff, Geo Pertea, Daehwan Kim, David R Kelley, Harold Pimentel, Steven L Salzberg, John L Rinn & Lior Pachter

Affiliations | Contributions | Corresponding author

Nature Protocols **7**, 562–578 (2012) | doi:10.1038/nprot.2012.016 Published online 01 March 2012

Agenda: Day 1

Welcome, Basic Analysis

Basic analyses into Reusable Workflows

Galaxy Project Overview

NGS Analysis I: Through Tophat

A Simple Change ...

Persistence, Sharing, and Publishing

NGS Analysis II: Cufflinks, Cuffdiff

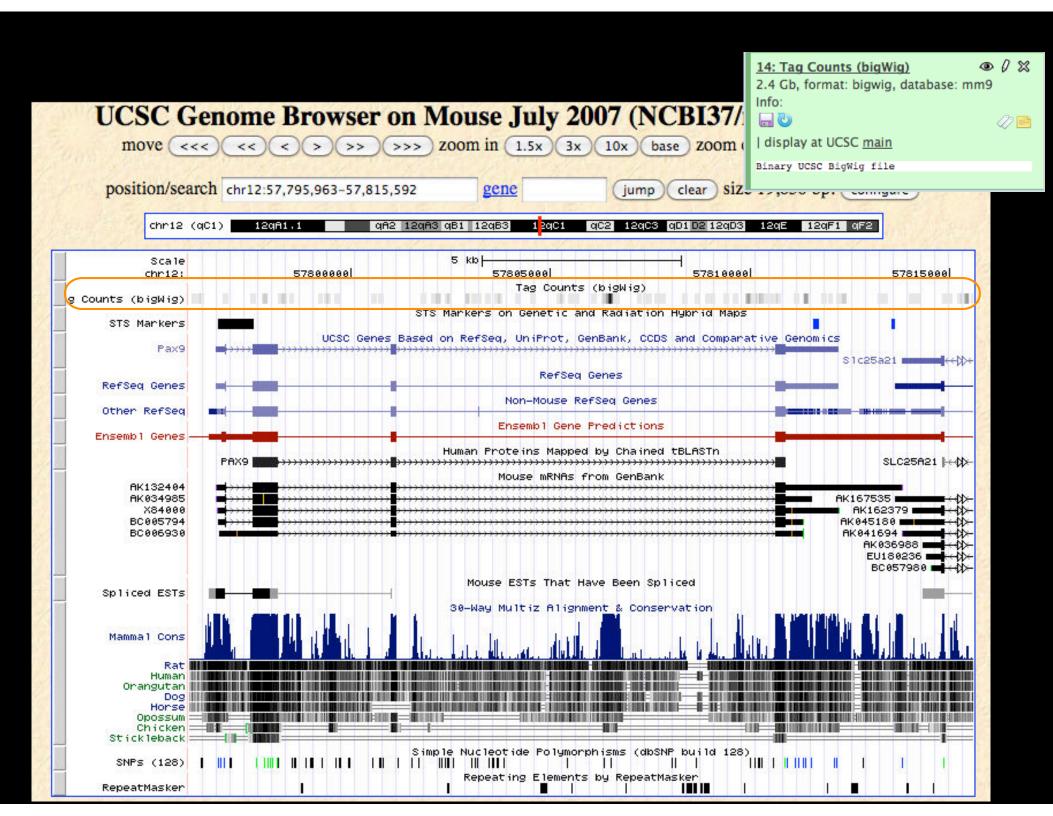
Visualization and visual analytics

Coffee and lunch breaks throughout the day

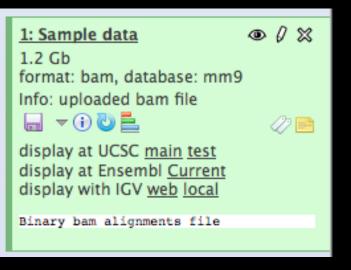
Visualize

Send data results to external genome browsers

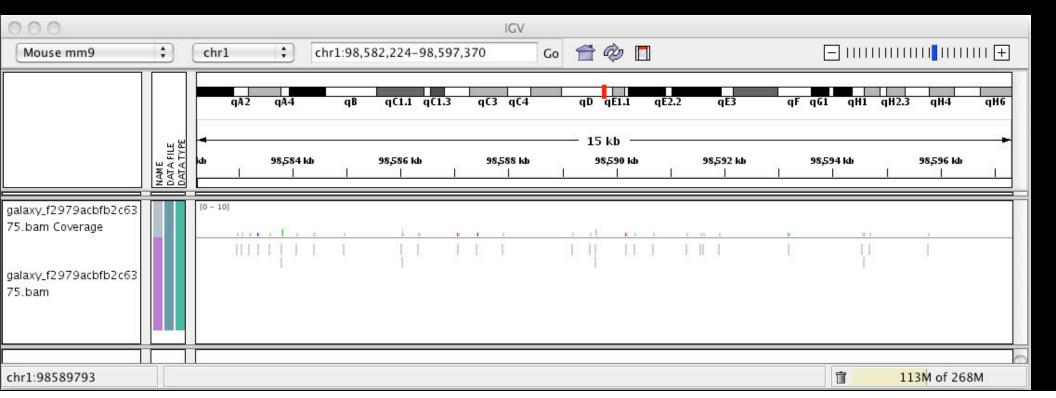
Trackster: Galaxy's genome browser


External Genome Browsers

UCSC


Ensembl

GBrowse


IGV

Integrative Genomics Viewer (IGV)

Galaxy

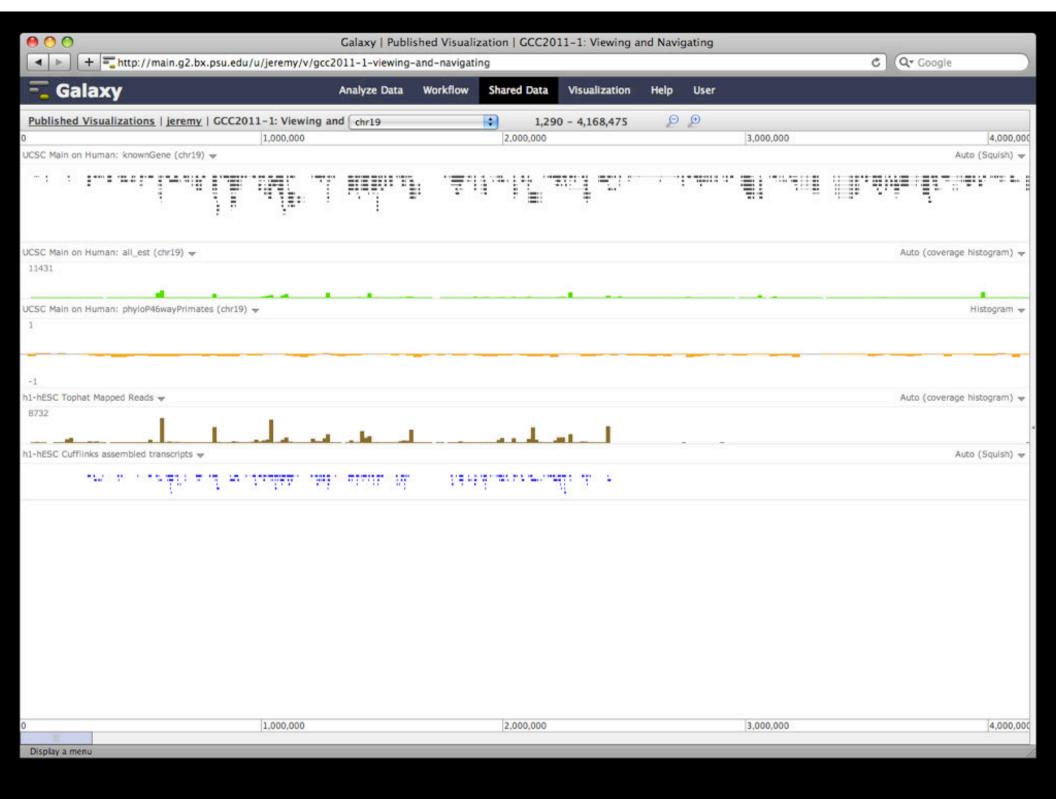
- tool integration framework
- heavy focus on usability
- + sharing, publication framework

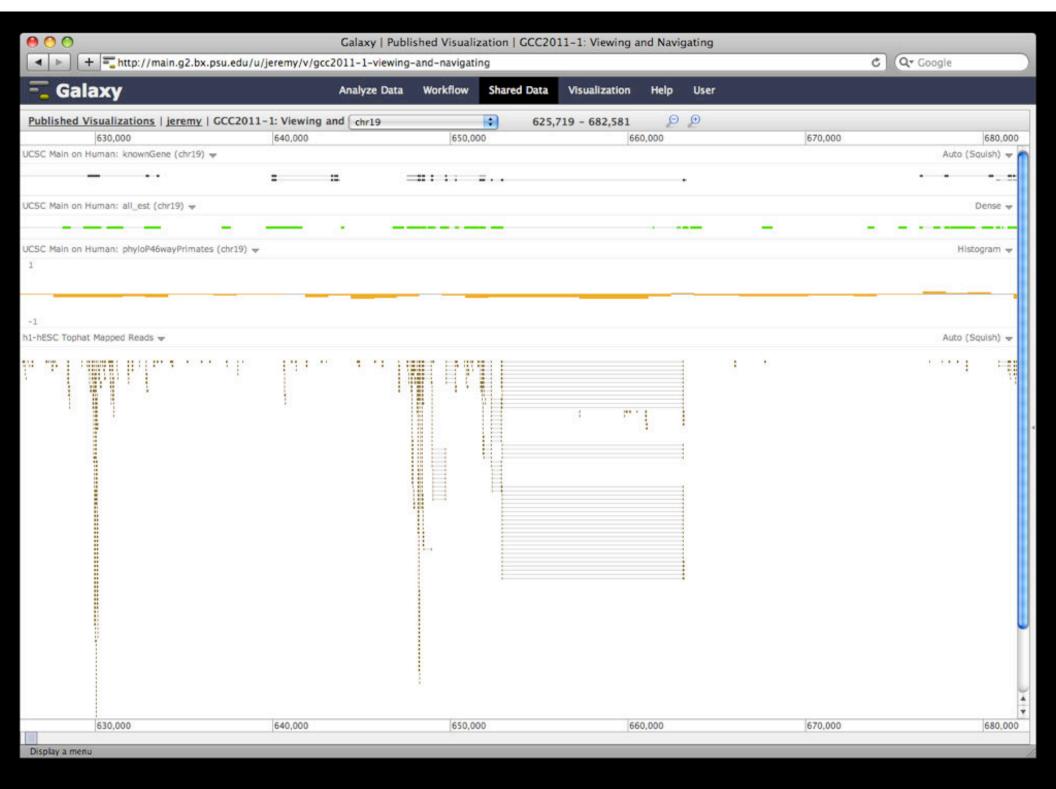
Genome Browser

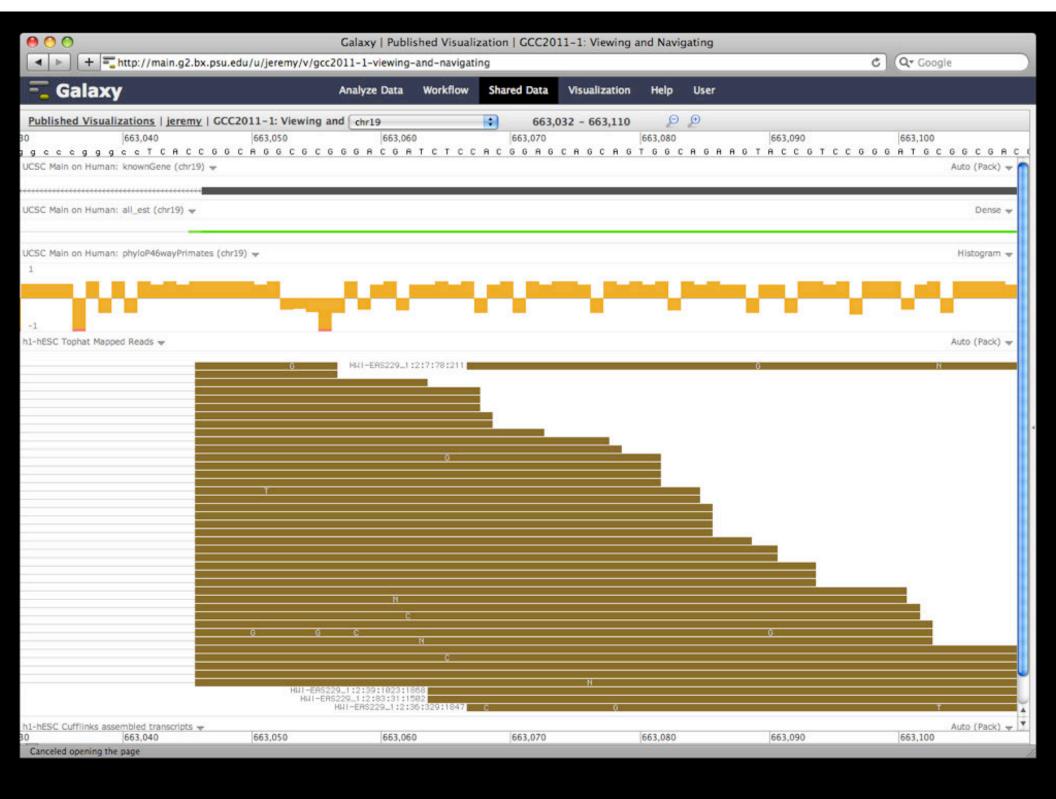
- + physical depiction of data
- visually identify correlations
- find interesting regions, features

Trackster

View your data from within Galaxy


- No data transfers to external site
- Use it locally, even without internet access


Supports common filetypes

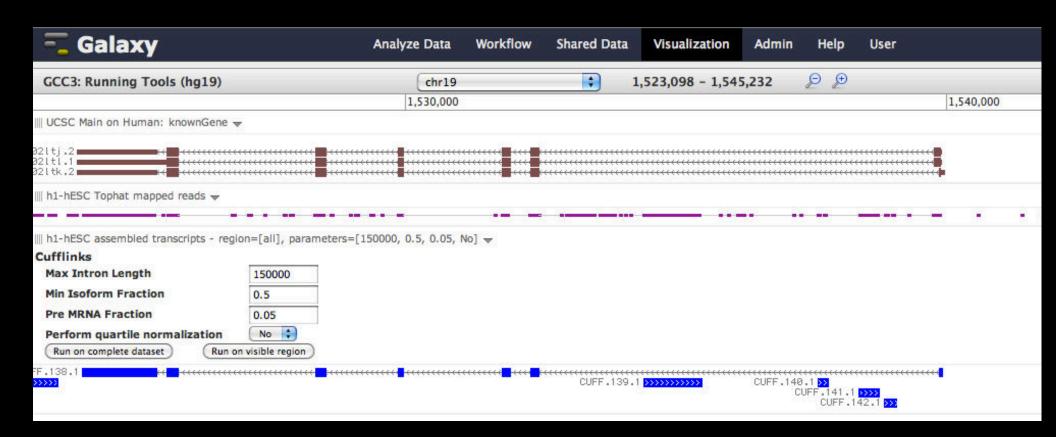

BAM, BED, GFF/GTF, WIG

Unique features

- custom genomes
- highly interactive

But really, why another genome browser

From static browsing to visual analysis


Visual feedback and experimentation needed for complex tools with many parameters

Leverage Galaxy strengths: a very sound model for abstracting interfaces to analysis tools and already integrates an enormous number

Dynamic Filtering

Integrating Tools and Visualization

Visualization: Even More

- usegalaxy.org → Shared Data → Published
 Visualizations
 - Don't everyone do this!
- galaxyproject.org/wiki/Events/GCC2012/Program
 - → Session 4 → The Galaxy Visualization Framework
 - Jeremy Goecks GCC2012 presentation.
 - Basic Navigation Demo starts @ 10:40
 - Dynamic Filtering Demo starts @ 12:15
 - Circster Demo starts @ 14:10
 - Visual Analytics Demo starts @ 15:40
 - Next @

Agenda: Day 1

