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Why we sequence transcriptomes? I.

= Show repertoire of expressed sequences,

including rare transcripts
= Gene expression
= SNPs
= Alternative splicing
= Structural variation

= Practical alternative to genome sequencing for

non-model organisms



Genomic model vs. non-model
organisms

= Model organism is a non-human species that is extensively

studied to understand particular biological phenomena

= Genomic model organisms:
= Occupy a pivotal position in the evolutionary tree

= Some quality of their genome makes them ideal to study

= Non-Genomic model organisms

= Rest of them

= [mportant for many reasons:
= Human pathogens

= Agricultural pathogens and pests




RNA-seq for non-model organisms |.

*No sequenced genomes most of the time

= Most analytical tools are designed for model

organisms

= Present unique challenges for quality control

for data analyses



What are we going to learn

= Basics of initial designing the experiment
= Analyses pipeline
= Primary analyses
= Read preprocessing
= Transcript assembly
= Assessing quality of assembly
= Mapping reads back assembled transcripts
= Secondary analyses
= Transcript characterization and annotation

= Comparative gene expression




Seguencing



Platform of choice

Roche/454's
GSFLX

Titanium

[lumina/
Solexa's GA(

Life/APG's
S0LD 3

Library/
template
preparation

Frag, MP/
emPCR

Fraq, MP/
solid-phase

Frag, MP/
emPCR

NGS
chemistry

PS

Cleavable

probe SBL

Read
length
(bases)

330*

Machine
cost

(USS)
500,000

540,000

595,000

Pros

Longer reads
improve
mapping in
repetitive
regions; fast
run times

Currently the
most widely
used platform
in the field

Two-base
encoding
provides
inherenterror
correction

High reagent
cost; high
error rates

in homo
polymer
repeats

Low
multiplexing
capability of
samples

Long run

times

Biological
applications

Bacterial and insect
genome de novo
assemblies; medium
scale (<3 Mb) exome
capture; 165 in
metagenomics

Variant discovery
by whole-genome
resequencing of

whole-exome capture;

gene discoveryin
metagenomics

Variant discovery
by whole-genome
resequencing o

whole-exome capture;

qene discoveryin
metagenomics

D. Muzny,
pers.
comm.

D. Muzny,
pers.
comm,

D. Muzny,
pers.
comm.

From Michael Metzker, http://view.ncbi.nlm.nih.gov/pubmed/19997069



Different read types for lllumina
sequencing

P5
Read type 5 Rd1 SP -

Indem?"ﬁdz SP P

F7

Paired end reads |

\FE F7
—_— Rd2 SP
' |ndex

Index #Razsp . RdlSP
Single end reads 8 o

D. Ligate index adapter

1

Size selection 200 -600bp

DMA Insert

Rd2 SP

Final PCR enrichment




Replication and sequencing |.
depth

= Replication:
= At least two biological replicates for expression analyses
= Sequencing depth:
= Depends:
= Goals of the experiments
= Samples and conditions; sample preparation

= Sequencing type

= Number and length of the genes



No of transcripts assembled
Increases as the no of reads increase |.

Number of reference cDNA
with matches to assembled
sequences”

Reads

Combination (millons) Expressed genes $ Redundant Non-redundant
Sample1 40 13416 10500 10060
Sample 1+2 72 15646 14250 13607
Sample 1+2+3 112 16916 19223 14370

$

*number of reference cDNA that showed sequence similarity to assembled
transcripts that showed at least 80% coverage and had at least 95% sequence

identity



Number of sequences in different |.
expression groups

S1: 40 Million reads
S1+2: 72 Million reads
S1+2+3: 112 Million reads

This shows number of reference cDNA that showed sequence similarity to
assembled transcripts that showed at least 80% coverage and had at least 95%
sequence identity. X axis is percentile ranking of the expression and Y axis is
the number of sequences



Analyzing the data

= Manually using UNIX terminal prompt
= Automated using PERL or Python scripts
= Using Makefile

= Reproducibly Workflow environment

= Galaxy

= Taverna



Steps of data analyses




Base calling from raw data

CASAVA

\ 4

The identity of each base of a cluster is read off Fastq file
from sequential images

From Debbie Nickerson, Department of Genome Sciences, University of Washington, http://tinyurl.com/6zbzh4



FASTQ

@BILLIEHOLIDAY:1:1:6:768#0/1
CATGATGGCAGAGGCAGAGGACAGGTTGCCAAAGCTCTCGCTTCTGGAACGTCTGAGGT TAT

CAATAAGCTC
+BILLIEHOLIDAY:1:1:6:768#0/1
abbbababbbbaa "a’ aa * aaa ] aa” ]"a abbbbbbbbbbbbbabbbba  abbb

bbbbbbbbbb

hatever_n_ame the unique instrument name

floweell lane

tile number within the flowcell lane

'w'-coordinate of the cluster within the tile

'v'-coordinate of the cluster within the tile

index number for a multiplexed sample (O for no indexing)

the member of a pair, /1 or /2 (paired-end or mate-pair
reads only)




Sources of error
= De-phasing
= Lagging strand de-phasing from incomplete
extension
= Leading strand de-phasing from over-extension
=  Polymerase errors (10°to 107)
= More likely to have an error after G

PCR induced errors (AT or GC rich regions)

= (Cross-cluster bridge formation




BER=base error rate

» BER: Estimated probability of a base being wrong
» Phred quality score (as of lllumina pipeline 1.3):

Q=-10-log,,(BER)

 In a FASTQ file they are encoded as ASCII: Q+64
« May be used to filter out poor quality reads, and to improve alignments

Phred Probability of Incorrect | Base Call Accuracy
Quality Score Based Call

10 1in 10 90%

20 1in 100 99%

30 1in 1000 99.9%

40 1 in 10000 99.99%




Quality assessment - FASTQC

. ‘ ‘ ualty seores across all basas lluming 1.3 encodi
Qualty scores across all bases lluming »vL3 encoding) sty [ gl

I RIEIRARSRARARRARRAR S OY [LEL b
i

135 79 0BLTBARISTDNRHITNNSBLHTH535TH90EGTETNRTN
Fostion in read (b




Preprocessing

= Why
= Get rid of artifacts from library preparations (PCR) and sequencing
steps (errors/adapters)
= Resulted in fragmented assemblies or mis-assemblies
= |nflate dataset
= Remove
= Adapter sequences
= Low quality bases
= FASTX-toolkit
= Cutadapt
= Custom perl script from UC Davis for paired-end reads
= Remove contaminates

= DeconSeq
= Web based
= Standalone




Assembling sequence reads into
transcripts



Transcript Assembly of lllumina |.
reads

= Challenges
= Short reads (76-150bp)
= Large datasets
= Needs a large number of reads

= Transcript expression is not uniform

= De novo assembly
= No reference
= Rnnotator, Trinity
= Highbred assembly
= Uses Longer reads (previous cDNA or 454 data) with lllumina short reads (Best approach)
= Reference based assembly

= TopHat/Cufflinks, ERANGE, and Scripture



—\ |
i

Excluded from further
analysis

L

Alignments B8 o

|

Novel gene
discoveries and

_ _ annotations
Differential gene expression Analysis(DESeq)



The Rnnotator assembly pipeline I.

= Input preprocessed data
= Strand information
= Remove duplicates

= K-mer based filtering

Martin et al. BMC
Genomics 2010 11:663 doi:10.1186/1471-
2164-11-663

PREPROCESSING

Duplicate read removal

Error filtering

ASSEMBLY

Multiple Velvet assemblies

Contig merging

POST-PROCESSING

Strand identification

Error correction



Minumus2 in Amos package

Converters -
toAmos

AMOS message file

Input
Bank Create .

Overlapper

AMOS API

AMOS Bank

Bank Mgmt

AMOS message file

Converter - ace,
contig, etc.




Assessing the quality of the
assembly



A comparison of the performance between the Rnnotator

assembly and a single Velvet assembly.

Rnnotator

(non-stranded) Rnnotator Velvet Oases Multiple-k
C.
albicans SC531
4
Accuracy! 94.0 95.0 97.4 92.3 96.6
Completeness? 81.9 80.4 66.7 79.9 85.9
- Contiguity? 58.4 58.0 46.6 47.9 37.3
= Gene fusions* 1.73 0.26 1.18 1.31 0.20

1Accuracy: the percentage of contigs that share at least 95% identity with the reference genome;
2Completeness: percentage of known genes covered by the contigs to at least 80% of the gene
length;

3Contiguity: percentage of complete genes covered by a single contig over at least 80% of the
gene length.

4Gene fusions: the percentage of contigs that contain more than 50% of two or more annotated

genes.
Martin et al. BMC Genomics 2010 11:663 do0i:10.1186/1471-2164-11-663
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Ortholog Hit Ratio indicates the completeness of assembly

0

N\

\

Best Ref protein

Hit

T Query protein

(Y
"Ortholog Hit Ratio" = (#Bases in (v)/(#Bases in f)

Total expressed 20721 W }
More than 200 reads 17068 0 H H H H H Oo e

Ortholog hit ratio
About 20,000 assembled ESTs had more than 0.8 OHR

O’Neil, 2010: Ewen-Campen, 2011 Python script



Depth of sequencing and
assembly can be assessed using
Ultra Conserved Othologs (UCQO)

= Compare with eukaryotic ultraconserved genes

= http://compgenomics.ucdavis.edu/compositae_reference.php



Annotation of assembled transcripts



THE GENE ONTOLOGY

0 Gene Ontology Consortium

0 Provide a controlled vocabulary to describe gene and

gene product attributes in any organism

0 Includes both the development of the Ontology and the

maintenance of a Database of annotations

Adapted from Blast2Go presentation




biological_process

THE ONTOLOGY

Annotations are given to / \
the most specific (low)
level . G0:0009987 G0:0007582

True path rule: \ /

aantation at a term cellular physiological
implies annotation to all -l
its parent terms (

Annotation is given with

an Evidence Code: =
IDA: inferred by direct / \
aS Say mitotic cell cycle { M phase
TAS: traceable author | |
statement \ /
I.SS:. infered by sequence M phase of mitotic cellcyclé
similarity
IEA: electronic [,, .
annotation e

eukaryotic cell nucleus to produce two

G0:0007067 daughter nuclei that, usually,

contain the identical chromosome
complement to their mother.

mitosis

Adapted from Blast2Go presentation



Blast2GO

= Suite for functional annotation and data mining on
functional data

= Considerations for
= Simlarity
= Length of the overlap
= Percentage of hit sequence spanned by the overlap
= Evidence original annotation
= Blast hits and motif hits
= Refinement by additional methods
= Visualization:
= Annotation charts

= Desktop Java application
=web interface @ Babelomics:

Adapted from Blast2Go presentation



Blast2GO Annotation strategy I.

go1,g02, go3
go1,g03, go4d
go3,905, go6,go8
gol,go4d

go6,g09, go8
goi,go8
go4,go1, go8,go9

go2

go2,go4, go4
g02,9g05, gob6
go2,go4

Adapted from Blast2Go presentation



Blast2GO Annotation Strategy

go1 go2, go3,
GO11
Refinement gos,
||- GO12, GO13
InterPro
Annex
GOSlim go2,go4
Manual

More information:
http://www.blast2go.com/data/blast2qgo/b2qg tutorial 23062009.pdf



http://www.blast2go.com/data/blast2go/b2g_tutorial_23062009.pdf
http://www.blast2go.com/data/blast2go/b2g_tutorial_23062009.pdf
http://www.blast2go.com/data/blast2go/b2g_tutorial_23062009.pdf

Blast2go output




Molecular function

enzyme
regulator activity

(2)

transporter
activity (1)

catalytic activity

(4)




Mapping



Mapping reads to assembled
transcripts

= Aligners

= Burrow Wheeler Transform (BWT)
= Fast
= Need good quality data
= Bowtie, BWA, SOAP2

= Hash tables
= Slower
= More sensitive — better for SNP finding
= PerM, SHRIMP, BFAST, ELAND

= Mapping back to a reference genome

= Splice aware aligners:
= TOPHAT, MapSplice

= Mapping back to assembled transcripts
= No splice junctions




MRNA seq reads mapped to cDNA

using BWA

vle Total Reads Reads Mapped % Reads Mapped

Sample 1

36,856,702 29,479,287

38,967,190 34,688,060

50,018,335 37,275,875

39,584,939 30,702,758

32,622,057 27,450,258

39,060,469 31,627,675

Treatment 1

Treatment 2



Differential gene expression
analyses




Estimate the number of reads In |.
each transcript

= Short reads aligned to a transcript are counted
= Count each read at most once
= Reads are discarded

= Not uniquely mapped

= Aligned to several genes

= Poor alignment quality score

= (for paired-end reads) the mates matches to different genes

Simon Anders



Normalization

= Number of reads (coverage) vary between samples (Sequencing
depth
= Other technical effects
I (Reads Per KB per Million mapped reads)
= divide counts per million reads and by gene length

= RPKM assumes:
= Total amount of RNA per cell is constant
= Most genes do not change expression

= RPKM is invalid if there are a few very highly expressed genes that
have dramatic change in expression (dominate the pool of reads)

= Quantile normalization (Bullard, 2010)

= Produces non-integer counts, not good for Poisson or Negative
Binomial model based methods




Scaling factor normalization as in
DEseq

= Reference sample
= The geometric mean of the counts in all samples for each gene
= Get the sequencing depth of a sample relative to the
reference

= Calculate for each gene the quotient of the counts in the test

sample divided by the counts the of reference sample

= Median of all the quotients is the depth of the library




Noise

= Shot noise
= The variance in counts that persists even
if everything is exactly equal
= unavoidable, appears even with perfect replication
= dominant noise for weakly expressed genes

= Technical noise
= from sample preparation and sequencing
= Biological noise
= Dominant noise for strongly expressed genes

|
paindwod aq ued

Blep ay] Wolj

palewiss aq 0} spaau

—_—

Simon Anders




Statistical methods for DEG
analyses

= Mathematically shown:
= |f
= number of reads is large
= Probability of a read mapped to a gene is small

= Binomial distribution is well approximated by Poisson distribution
= Poisson distribution: mean = variance

= counts for the same gene from different technical replicates
have a variance equal to the mean (Poisson)

= counts for the same gene from different biological replicates
have a variance exceeding the mean (overdispersion)

= The negative-binomial distribution

= A commonly used generalization of the Poisson distribution with
two parameters

= Estimate a scaling factor to use with the statistical model




Biological vs technical replicates

density

biological replicates
' technical replicates
Poisson noise

squared coefficient of variatic

10 100 1000

mean

RNA-Seq of yeast [Nagalakshmi et al, 2008]



Packages for testing for differential |.

= Parametric
= Based on negative-binomial distribution:

= edgeR (Robinson, Mcarthy, Smyth) Performance was compared

= DESeq (Anders, Huber) by Kvam, 2011
BaySeq was slightly better

= BaySeq (Hardcastle, Kelly)
= Based on Binomial distribution:
= DEGSeq (Wang et al.)
= Non parametric
= Cuffdiff
= NOlseq



Correlation between replicates

Correlation between ¥204ee1 and X236ee! Correlation between X204eel and X237eel Correlation between X236ee! and X237eel

X236eel
K237eel
X237eel

$0dee! ' el Yo8ee!

Correlation between X204pp1 X237pp1 M Correlation between X204pp1 X236pp1 Correlation between X236pp1 X237 pp1




Base Base Base Fold log2FoldC
Mean MeanA MeanB Change hange pval padj

110 22 198
o944 860 227

Base Mean Mean of Base MeanA and B

Base MeanA Reads from sample A divided by the
size factor

Base MeanB Reads from sample A divided by the
size factor

padj adjusted P value for
multiple testing with the Benjamini-
Hochberg procedure




Tutoral

= http://galaxy.oardc.ohio-state.edu
= email : mcic@gmail.com

= pwd: glbiouse

= Shared data:

= Published Pages: GLBIO RNA-seq Analysis
Exercise

= Data Libraries
= DESeq Sample Data: to use with DEseqg
= Rnnotator - final contigs.fa: For mapping

= Rnhnotator Contigs blastx with nr: For
annotation



http://galaxy.oardc.ohio-state.edu/
http://galaxy.oardc.ohio-state.edu/
http://galaxy.oardc.ohio-state.edu/
http://galaxy.oardc.ohio-state.edu/
mailto:mcic@gmail.com
http://galaxy.oardc.ohio-state.edu/u/mcic-admin/p/glbio-rna-seq-analysis-exercise
http://galaxy.oardc.ohio-state.edu/u/mcic-admin/p/glbio-rna-seq-analysis-exercise
http://galaxy.oardc.ohio-state.edu/u/mcic-admin/p/glbio-rna-seq-analysis-exercise
http://galaxy.oardc.ohio-state.edu/u/mcic-admin/p/glbio-rna-seq-analysis-exercise
http://galaxy.oardc.ohio-state.edu/u/mcic-admin/p/glbio-rna-seq-analysis-exercise
http://galaxy.oardc.ohio-state.edu/u/mcic-admin/p/glbio-rna-seq-analysis-exercise
http://galaxy.oardc.ohio-state.edu/library/browse_libraries?sort=name&f-description=All&f-name=All&operation=browse&id=ebfb8f50c6abde6d
http://galaxy.oardc.ohio-state.edu/library/browse_libraries?sort=name&f-description=All&f-name=All&operation=browse&id=ebfb8f50c6abde6d
http://galaxy.oardc.ohio-state.edu/library/browse_libraries?sort=name&f-description=All&f-name=All&operation=browse&id=ebfb8f50c6abde6d
http://galaxy.oardc.ohio-state.edu/library/browse_libraries?sort=name&f-description=All&f-name=All&operation=browse&id=ebfb8f50c6abde6d
http://galaxy.oardc.ohio-state.edu/library/browse_libraries?sort=name&f-description=All&f-name=All&operation=browse&id=33b43b4e7093c91f
http://galaxy.oardc.ohio-state.edu/library/browse_libraries?sort=name&f-description=All&f-name=All&operation=browse&id=33b43b4e7093c91f
http://galaxy.oardc.ohio-state.edu/library/browse_libraries?sort=name&f-description=All&f-name=All&operation=browse&id=33b43b4e7093c91f
http://galaxy.oardc.ohio-state.edu/library/browse_libraries?sort=name&f-description=All&f-name=All&operation=browse&id=33b43b4e7093c91f
http://galaxy.oardc.ohio-state.edu/library/browse_libraries?sort=name&f-description=All&f-name=All&operation=browse&id=33b43b4e7093c91f
http://galaxy.oardc.ohio-state.edu/library/browse_libraries?sort=name&f-description=All&f-name=All&operation=browse&id=1cd8e2f6b131e891

GLBIO WorkFlow

- _MCIC Galaxy Analyze Data  Workflow  Shared Data =~ Admin Help  User

Shared Workflow | GLBIO_WorkFlow

Step Annotation
Step 1: Input dataset sample_2_1.fastg

sample_2_1.fastq
select at runtime

Step 2: Input dataset sample_2_2.fastg

sample_2_2 fastq
select at runtime

Step 3: Input dataset sample_1_1.fastq

sample_1_1.fastq
select at runtime

Step 4: Input dataset sample_1_2.fastg

sample_1_2.fastq
select at runtime

Step 5: Input dataset . Rnnotator Contigs blast against nt

blastx_input
select at runtime




-~ MCIC Galaxy Analyze Data  Workflow  Shared Data ~ Admin  Help  User

Shared Workflow | GLBIO_WorkFlow

Step 6: Rnnotator

Library

Sample_2 1.fastq

Libraries 1

Library < Shuffled_sample2 7

non strand-specific paired-end library

Insert Length

Sample_2 1.fastc

300
Filename
select at runtime
Sample_1_1.fasfc
Libraries 2
Library P

non strand-specific paired—end\library

Insert Length
300

Sample_1_2.fastq

Filename
select at runtime

Use Default General Options
Yes

Use Default Read Pre-processing Options
Yes

Use Default Assembly Options
No

[-a assembler] Assembler to use (velvet, oases) (default: velvet)




Thank you !!!!



RNA families

RNA
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Non-coding

|
|

PolyA
mRNA

Non-PolyA
mRNA

W

Structural

Regulatory

]
)

DNA |
associated |

RNA
associated

Ribosome
associated

-

Micro RNA

TSS
associated

Anti-sense

Enhancer

RNA

Replisome l

DNA Repair

Telomeric

 DNA

methylation

- (PIRNA) -
rRNA

llumina



From John McPherson, OICR

Second-gen sequencers |

100 Gb , lllumina/GAIl
short-read sequencers

-
> 10Gb
-
(b
C
— 1Cb 454 GS FLX pyrosequencer
@)
qv)
S 100 Mb
-
(b
o
o) 10Mb ABI capillary sequencer
= (0.04-0.08 Mb in 450-800 bp reads,
qv) 96 reads, 1-3 hours)
O 1Mb , S
a M 7 f\\\ !
ﬂ\\;\“f\j \y f“uf\\(‘"‘_, i N’/ \v"ﬂb’/\‘ // vy, \.‘/\)’f
10 bp 100 bp 1,000 bp

read length
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Different types of platforms

= ABI capillary sequencer (First generation)

= Current generation (Second generation)
= |llumina
= 454
= AB/SOLIDv3

= |lon torrent

= Next generation (Third generation)

= PacBio




BWT aligners

Transformation

Sorting All
Al Rows ip
Alphabetical
Order by their
first letters

Taking
Last Column

Output

Rotations Last Column

"BANANA|

"BANANA|
|I"BANANA
A|"BANAN
NA|"BANA
ANA|"BAN
NANA|"BA
ANANA|"B
BANANA|?

ANANA|"B
ANA|"BAN
A|"BANAN
BANANA|?
NANA|"BA
NA|"BANA
ABANANA|
|"BANANA

ANANA|"B
ANA|"BAN
A|"BANAN
BANANA|A
NANA|"BA
NA|*"BANA
"BANANA|
|I"BANANA

BNN”AA|A



http://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform

Sequence reads Hash index Read identifiers associated

with each hash index
[o7] [ACaTaTate ],
[02] [cTAGTgte k-
63 [RCGTGTesg)
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[07) [AAGTCGgagl
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Flicek and Birney, Nature Methods 6, S6 - S12 (2009)



CONCEPTS OF FUNCTIONAL ANNOTATION

O Gene/Protein function

« Referes to the molecular function of a gene or a protein:

Tyrosine kinase

O Functional annotation

« More general, referes to the characterization of functional

aspect of the protein.
Stress-related, cytoplasm, ABC transporter
« Also referes to the process of assingment of a function label

« Habitually, standard vocabularies are used to assign function
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= v of count values is modelled as v = sy + as2u2,

= where y is the expected normalized count value (estimated
by the average normalized count value), s is the size factor
for the sample under consideration, and a is the dispersion
value for the gene under consideration.




