RNA-seq Approach to Study Gene Expression Profiles in Non-Model Organisms

Asela Wijeratne (wijeratne.1@osu.edu) Saranga Wijeratne (wijeratne.3@osu.edu) Tea Meulia (Meulia.1@osu.edu)

Why we sequence transcriptomes?

 Show repertoire of expressed sequences, including rare transcripts

- Gene expression
- SNPs
- Alternative splicing
- Structural variation

 Practical alternative to genome sequencing for non-model organisms

Genomic model vs. non-model organisms

- Model organism is a non-human species that is extensively studied to understand particular biological phenomena
- Genomic model organisms:
 - Occupy a pivotal position in the evolutionary tree
 - Some quality of their genome makes them ideal to study
- Non-Genomic model organisms
 - Rest of them
 - Important for many reasons:
 - Human pathogens
 - Agricultural pathogens and pests

RNA-seq for non-model organisms

- No sequenced genomes most of the time
- Most analytical tools are designed for model organisms
- Present unique challenges for quality control for data analyses

What are we going to learn

- Basics of initial designing the experiment
- Analyses pipeline
 - Primary analyses
 - Read preprocessing
 - Transcript assembly
 - Assessing quality of assembly
 - Mapping reads back assembled transcripts
 - Secondary analyses
 - Transcript characterization and annotation
 - Comparative gene expression

Sequencing

Platform of choice

Platform	Library/ template preparation	NGS chemistry	Read length (bases)	Run time (days)	Gb per run	Machine cost (US\$)	Pros	Cons	Biological applications	Refs
Roche/454's GSFLX Titanium	Frag, MP/ emPCR	PS	330*	0.35	0.45	500,000	Longer reads improve mapping in repetitive regions; fast run times	High reagent cost; high error rates in homo- polymer repeats	Bacterial and insect genome de novo assemblies; medium scale (<3 Mb) exome capture; 16S in metagenomics	D. Muzny, pers. comm.
Illumina/ Solexa's GA _{II}	Frag, MP/ solid-phase	RTs	75 or 100	4*, 9 ^s	18*, 35 ⁵	540,000	Currently the most widely used platform in the field	Low multiplexing capability of samples	Variant discovery by whole-genome resequencing or whole-exome capture; gene discovery in metagenomics	D. Muzny, pers. comm.
Life/APG's SOLiD 3	Frag, MP/ emPCR	Cleavable probe SBL	50	7 [‡] , 14 ⁵	30 [‡] , 50 [§]	595,000	Two-base encoding provides inherent error correction	Long run times	Variant discovery by whole-genome resequencing or whole-exome capture; gene discovery in metagenomics	D. Muzny, pers, comm.

From Michael Metzker, http://view.ncbi.nlm.nih.gov/pubmed/19997069

Different read types for Illumina sequencing

Replication and sequencing depth

Replication:

At least two biological replicates for expression analyses

Sequencing depth:

- Depends:
 - Goals of the experiments
 - Samples and conditions; sample preparation
 - Sequencing type
 - Number and length of the genes

No of transcripts assembled increases as the no of reads increase

			Number of reference cDNA with matches to assembled sequences*			
Combination	Reads (millons)	Expressed genes \$	Redundant	Non-redundant		
Sample1	40	13416	10500	10060		
Sample 1+2	72	15646	14250	13607		
Sample 1+2+3	112	16916	19223	14370		

\$These is based on the alignments to reference cDNA; Number of sequences with more than 200 Illumina reads aligned

*number of reference cDNA that showed sequence similarity to assembled transcripts that showed at least 80% coverage and had at least 95% sequence identity

Number of sequences in different expression groups

This shows number of reference cDNA that showed sequence similarity to assembled transcripts that showed at least 80% coverage and had at least 95% sequence identity. X axis is percentile ranking of the expression and Y axis is the number of sequences

Analyzing the data

- Manually using UNIX terminal prompt
- Automated using PERL or Python scripts
- Using Makefile
- Reproducibly Workflow environment

From Debbie Nickerson, Department of Genome Sciences, University of Washington, http://tinyurl.com/6zbzh4

FASTQ

@BILLIEHOLIDAY:1:1:6:768#0/1

CATGATGGCAGAGGCAGAGGACAGGTTGCCAAAGCTCTCGCTTCTGGAACGTCTGAGGTTAT CAATAAGCTC

+BILLIEHOLIDAY:1:1:6:768#0/1

Whatever_name	the unique instrument name
1	flowcell lane
1	tile number within the flowcell lane
6	'x'-coordinate of the cluster within the tile
768	'y'-coordinate of the cluster within the tile
#0	index number for a multiplexed sample (0 for no indexing)
1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)

Sources of error

- De-phasing
 - Lagging strand de-phasing from incomplete extension
 - Leading strand de-phasing from over-extension
- Polymerase errors (10⁻⁵ to 10⁻⁷)
- More likely to have an error after G
- PCR induced errors (AT or GC rich regions)
- Cross-cluster bridge formation

BER=base error rate

- BER: Estimated probability of a base being wrong
- Phred quality score (as of Illumina pipeline 1.3):

$$\mathbf{Q} = -10 \cdot \log_{10} (\mathrm{BER})$$

- In a FASTQ file they are encoded as ASCII: Q+64
- May be used to filter out poor quality reads, and to improve alignments

Phred Quality Score	Probability of Incorrect Based Call	Base Call Accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10000	99.99%

Quality assessment - FASTQC

Preprocessing

Why

- Get rid of artifacts from library preparations (PCR) and sequencing steps (errors/adapters)
 - Resulted in fragmented assemblies or mis-assemblies
 - Inflate dataset
- Remove
 - Adapter sequences
 - Low quality bases
 - FASTX-toolkit
 - Cutadapt
 - Custom perl script from UC Davis for paired-end reads
- Remove contaminates
 - DeconSeq
 - Web based
 - Standalone

Assembling sequence reads into transcripts

Transcript Assembly of Illumina reads

- Challenges
 - Short reads (76-150bp)
 - Large datasets
 - Needs a large number of reads
 - Transcript expression is not uniform
- De novo assembly
 - No reference
 - Rnnotator, Trinity
 - Highbred assembly
 - Uses Longer reads (previous cDNA or 454 data) with Illumina short reads (Best approach)
- Reference based assembly
 - TopHat/Cufflinks, ERANGE, and Scripture

The Rnnotator assembly pipeline

- Input preprocessed data
- Strand information
- Remove duplicates
- K-mer based filtering

Martin et al. *BMC Genomics* 2010 11:663 doi:10.1186/1471-2164-11-663

Minumus2 in Amos package

Assessing the quality of the assembly

A comparison of the performance between the Rnnotator assembly and a single Velvet assembly.

	Rnnotator (non-stranded)	Rnnotator	Velvet	Oases	Multiple- <i>k</i>
<i>C. albicans</i> SC531 4					
Accuracy ¹	94.0	95.0	97.4	92.3	96.6
Completeness ²	81.9	80.4	66.7	79.9	85.9
 Contiguity³ 	58.4	58.0	46.6	47.9	37.3
 Gene fusions⁴ 	1.73	0.26	1.18	1.31	0.20

¹Accuracy: the percentage of contigs that share at least 95% identity with the reference genome; ²Completeness: percentage of known genes covered by the contigs to at least 80% of the gene length;

³Contiguity: percentage of complete genes covered by a *single* contig over at least 80% of the gene length.

⁴Gene fusions: the percentage of contigs that contain more than 50% of two or more annotated genes.

Martin et al. BMC Genomics 2010 11:663 doi:10.1186/1471-2164-11-663

Length distribution

ReferenceAssembled

Ortholog Hit Ratio indicates the completeness of assembly

O'Neil, 2010; Ewen-Campen, 2011 Python script

Depth of sequencing and assembly can be assessed using Ultra Conserved Othologs (UCO)

Compare with eukaryotic ultraconserved genes

http://compgenomics.ucdavis.edu/compositae_reference.php

Annotation of assembled transcripts

THE GENE ONTOLOGY

Gene Ontology Consortium

 Provide a <u>controlled vocabulary</u> to describe gene and gene product attributes in any organism
 Includes both the development of the Ontology and the

maintenance of a Database of annotations

Adapted from Blast2Go presentation

THE ONTOLOGY

- Annotations are given to the most specific (low) level.
- True path rule: annotation at a term implies annotation to all its parent terms
- Annotation is given with an Evidence Code:
 - **IDA**: inferred by direct assay
 - **TAS**: traceable author statement
 - **ISS**: infered by sequence similarity
 - IEA: electronic annotation

....

More specific

Adapted from Blast2Go presentation

Blast2GO

 Suite for functional annotation and data mining on functional data

- Considerations for annotation
 - Simlarity
 - Length of the overlap
 - Percentage of hit sequence spanned by the overlap
 - Evidence original annotation
 - Blast hits and motif hits
 - Refinement by additional methods
- Visualization:
 - Annotation charts
 - Knowledge discovery on the DAG
- Desktop Java application

web interface @ Babelomics: Babelomics for non-model

Blast2GO Annotation strategy

Blast2GO Annotation Strategy

More information: <u>http://www.blast2go.com/data/blast2go/b2g_tutorial_23062009.pdf</u>

Blast2go output

Gene 1	NA	165	0		0	
						C:extracellular region; P:defense response to fungus; P:killing of cells of another organism

Molecular function

Mapping reads to assembled transcripts

Aligners

Burrow Wheeler Transform (BWT)

- Fast
- Need good quality data
- Bowtie, BWA, SOAP2
- Hash tables
 - Slower
 - More sensitive better for SNP finding
 - PerM, SHRIMP, BFAST, ELAND
- Mapping back to a reference genome
 - Splice aware aligners:
 - TOPHAT, MapSplice
- Mapping back to assembled transcripts
 - No splice junctions

mRNA seq reads mapped to cDNA using BWA

Sample	Total Reads	Reads Mapped	% Reads Mapped	
]
Sample 1	36,856,702	29,479,287	80%	
Sample 2	38,967,190	34,688,060	89%	Treatment 1
Sample 3	50,018,335	37,275,875	75%	
Sample 1	39,584,939	30,702,758	78%	
Sample 2	32,622,057	27,450,258	84%	 Treatment 2
Sample 3	39,060,469	31,627,675	81%	

Differential gene expression analyses

Estimate the number of reads in each transcript

- Short reads aligned to a transcript are counted
- Count each read at most once
- Reads are discarded
 - Not uniquely mapped
 - Aligned to several genes
 - Poor alignment quality score
 - (for paired-end reads) the mates matches to different genes

Simon Anders

Normalization

- Number of reads (coverage) vary between samples (Sequencing depth
- Other technical effects
- **RPKM** (Reads Per KB per Million mapped reads)
 - divide counts per million reads and by gene length
- RPKM assumes:
 - Total amount of RNA per cell is constant
 - Most genes do not change expression
- RPKM is invalid if there are a few very highly expressed genes that have dramatic change in expression (dominate the pool of reads)
- Quantile normalization (Bullard, 2010)
- Produces non-integer counts, not good for Poisson or Negative Binomial model based methods

Scaling factor normalization as in DEseq

- Reference sample
 - The geometric mean of the counts in all samples for each gene
- Get the sequencing depth of a sample relative to the reference
 - Calculate for each gene the quotient of the counts in the test sample divided by the counts the of reference sample
- Median of all the quotients is the depth of the library

Noise

Shot noise

- The variance in counts that persists even
 - if everything is exactly equal
 - unavoidable, appears even with perfect replication
 - dominant noise for weakly expressed genes

Technical noise

- from sample preparation and sequencing
- Biological noise
 - Dominant noise for strongly expressed genes

can be computed

needs to be estimatec from the data

Simon Anders

Statistical methods for DEG analyses

- Mathematically shown:
 - If
 - number of reads is large
 - Probability of a read mapped to a gene is small
 - Binomial distribution is well approximated by Poisson distribution
- Poisson distribution: mean = variance
- counts for the same gene from different technical replicates have a variance equal to the mean (Poisson)
- counts for the same gene from different biological replicates have a variance exceeding the mean (overdispersion)
- The negative-binomial distribution
 - A commonly used generalization of the Poisson distribution with two parameters
- Estimate a scaling factor to use with the statistical model

Biological vs technical replicates

RNA-Seq of yeast [Nagalakshmi et al, 2008]

Packages for testing for differential

Parametric

- Based on negative-binomial distribution:
 - edgeR (Robinson, Mcarthy, Smyth)
 - DESeq (Anders, Huber)
 - BaySeq (Hardcastle, Kelly)
- Based on Binomial distribution:
 - DEGSeq (Wang et al.)
- Non parametric
 - Cuffdiff
 - NOIseq

Performance was compared by Kvam, 2011 BaySeq was slightly better

Correlation between replicates

DEseq output

	Base	Base	Base	Fold	log2FoldC			
d	Mean	MeanA	MeanB	Change	hange	pval	padj	
Gene 1	110	22	198	9	3	0		0
Gene 2	544	860	227	0	-2	0		0

Base Mean	Mean of Base MeanA and B
Base MeanA	Reads from sample A divided by the size factor
Base MeanB	Reads from sample A divided by the size factor
padj	adjusted P value for multiple testing with the Benjamini- Hochberg procedure

Tutorial

- <u>http://galaxy.oardc.ohio-state.edu</u>
- email : <u>mcic@gmail.com</u>
- pwd: glbiouse
- Shared data:
 - Published Pages: <u>GLBIO RNA-seq Analysis</u> <u>Exercise</u>
 - Data Libraries
 - DESeq Sample Data: to use with DEseq
 - <u>Rnnotator final contigs.fa</u>: For mapping
 - Rnnotator Contigs blastx with nr: For annotation

GLBIO_WorkFlow

— MCIC Galaxy

Analyze Data Workflow

Shared Data Adm

Admin Help

User

Shared Workflow | GLBIO_WorkFlow

Step	Annotation
Step 1: Input dataset	sample_2_1.fastq
sample_2_1.fastq select at runtime	
Step 2: Input dataset	sample_2_2.fastq
sample_2_2.fastq select at runtime	
Step 3: Input dataset	sample_1_1.fastq
sample_1_1.fastq select at runtime	
Step 4: Input dataset	sample_1_2.fastq
sample_1_2.fastq select at runtime	
Step 5: Input dataset	Rnnotator Contigs blast against nt
blastx_input select at runtime	

T MCIC Galaxy	Analyze Data Workflow	Shared Data	Admin	Help	User
Shared Workflow GLBIO_WorkFlow					
Step 6: Rnnotator		-			_
Library		Sam	ple_2	2_1.t	astq
Libraries 1		- 1			
Library non strand-specific paired-end library	Shuffled_sampl	e2 🦵			
Insert Length 300		Sa	mple_	_2_1	.fasto
Filename select at runtime		Sa	mnlo	1 1	facto
Libraries 2		Ja		-''	.1451
Library non strand-specific paired-end library	Shuffled_sampl	e1 🖊		•	
Insert Length				7	
300 Filename		Sam	ple_1	_2.f	astq
select at runtime			•		•
Use Default General Options Yes					
Use Default Read Pre-processing Options Yes					
Use Default Assembly Options No					
[-a assembler] Assembler to use (velvet, oases) (default: velvet)					

Thank you !!!!

From John McPherson, OICR

Second-gen sequencers

Developments

Automated Library Construction In response to the increasing demand for constructing Illumina libraries, a semi-automated process which enables us to construct 96 Illumina libraries in approximately 6-8 hours has been developed. With a few simple modifications, the library production efficiency has doubled. The modifications include the shearing of DNA with a Covaris E210, and the cleaning of enzymatic reactions and fragment size selection with SPRI beads and a magnetic plate holder. Recently, a BioMek FX robot has been programmed to carry out the library construction process.

BioMek FX Robot The Beckman-Coulter Biomek FX robot is used to construct 96 Illumina libraries in parallel. This process automates the repetitive pipetting involved in library construction process and enables a single operator to construct 96 Illumina libraries in 3 days with minimal ergonomic risk.

Deck Layout of the BloMek Robot

Illumina Library Quality The efficiency, quality and reproducibility of libraries created on BioMek are currently being optimized.

Library Quantification

Using the Agilent Bioanalyzer High Sensitivity DNA chip, the quantity of libraries was assessed. A sample is required to have a concentration of at least 10 nM. The graph below shows the Bioanalyzer traces of 13 libraries constructed by the BioMek FX robot.

Different types of platforms

- ABI capillary sequencer (First generation)
- Current generation (Second generation)
 - Illumina
 - 454
 - AB/SOLiDv3
 - Ion torrent
- Next generation (Third generation)
 - PacBio

BWT aligners

Transformation						
Input	All Rotations	Sorting All Rows in Alphabetical Order by their first letters	Taking Last Column	Output Last Column		
^BANANA	^BANANA ^BANANA A ^BANA ANA ^BAN ANA ^BA ANANA ^B BANANA ^B	ANANA ^B ANA ^BAN A ^BANAN BANANA ^ NANA ^BA NA ^BANA ^BANANA ^BANANA	ANANA ^ B ANA ^BA N A ^BANA N BANANA ^ NANA ^B A NA ^BAN A ^BANANA ^BANAN A	BNN^AA A		

<u> http://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform</u>

Flicek and Birney, Nature Methods 6, S6 - S12 (2009)

CONCEPTS OF FUNCTIONAL ANNOTATION

- **O** Gene/Protein function
 - Referes to the molecular function of a gene or a protein: Tyrosine kinase
- Functional annotation
 - More general, referes to the characterization of functional aspect of the protein.

Stress-related, cytoplasm, ABC transporter

- Also referes to the process of assingment of a function label
- Habitually, standard vocabularies are used to assign function

"Omics" wolrd

JOHN MCPHERSON, OICR, DIRECTOR OF THE CANCER GENOMICS PLATFORM

- v of count values is modelled as $v = s\mu + \alpha s^2\mu^2$,
- where μ is the expected normalized count value (estimated by the average normalized count value), s is the size factor for the sample under consideration, and α is the dispersion value for the gene under consideration.