
MGTAXA – a toolkit and a Web server for predicting taxonomy

of the metagenomic sequences with Galaxy front-end and

parallel computational back-end

Andrey Tovchigrechko, Seung-Jin Sul, Timothy Prindle,

Shannon J. Williamson and Shibu Yooseph

http://andreyto.github.com/mgtaxa/ atovtchi@jcvi.org

1

http://andreyto.github.com/mgtaxa/

MGTAXA Components

Predict taxonomy for bacterial metagenomic sequences
• Glimmer ICM based classifier (similar to Phymm approach). Parallelized on HTC and HPC clusters,

command line and Galaxy Web interface. Sequences above 300 bp.
• BLAST+ and Batch SOM implementations for HPC clusters with MPI-MapReduce framework. Calls

to pristine NCBI BLAST+ API – full compatibility. Scales to 2000 cores on XSEDE (former TeraGrid)
(TACC Ranger).

• Assembly contig consensus classifier from ORF BLASTP or APIS assignments

First algorithm to predict hosts for bacteriophages in metagenomes
• Explores compositional similarity between phage and host
• ICM and SOM for prediction and visualization
• Assigns phage scaffolds (5Kbp+) to bacterial sequences
• Uses infrastructure and interfaces of the bacterial classifier

CRISPR pipeline
• Scans genomes & metagenomes for CRISPR arrays and genes
• Connects with viral metagenomes through spacer matches – alternative way to establish the

bacteriophage-host relationship
• Parallelized on HTC and HPC clusters

2

ICMs for more sensitive compositional models with less
dependency on the length of training sequence

 Interpolated Context Model (ICM) developed
for Glimmer (Delcher 1999) to find correct
reading frame based on nucleotide
composition

 ICMs used as a basis of Phymm taxonomic
prokaryotic classification algorithm (Brady &
Salzberg, 2009)

 The main idea of ICM is to use longer k-mers
when there is a statistically significant
frequency of those specific k-mers in the
training sample

 This helps extract compositional signal from
sequences shorter than would be required by
a fixed k-mer model

 Also less bias toward longer training
sequences – critical for classification of
viruses

 We use ICMs to assign sample taxonomy as
well as bacteriophage host taxonomy Image from Delcher 1999

a c c t t a c g g g a c

a c c t t a c g g g a c

3

In this region, enterobacteria and their

phages cluster together. Many other

clades behave like that on this map.

Self-organizing Map (SOM) of tetranucleotide (4-mers) frequency vectors

Mix of NCBI RefSeq 5 Kb chunks and GOS scaffolds

How predicting the viral host taxonomy relates to
predicting the bacterial taxonomy

Color legend and proportions of

inputs to the SOM

4

Phage host prediction algorithm
5

 Viruses exhibit huge diversity and fast evolution. Homology based methods
for assigning taxonomy to viral metagenomic sequences suffer from the lack
of sufficiently close sequences in the reference databases

 Although it has been shown by several groups that viruses tend to adopt
polynucleotide (k-mer) composition of their hosts, regardless of homology,
ours is the first practical method that uses this tendency to build a classifier
for metagenomic viral contigs (5Kbp or longer)

 We score viral contigs against prokaryotic ICMs for the entire RefSeq and
pick the ICM with the best score as the host prediction

 We also have a mixed mode classifier, where we score both against ICMs
trained on viral sequences and prokaryotic ICMs. Unlike the only other
reported compositional taxonomic classifier of viral sequences (NBC, fixed
k models), ICM scoring does not exhibit any strong preference to longer
reference sequences (NBC reported to misclassify a lot of its benchmark
sequences as giant mimivirus).

Phage host prediction benchmarking
6

 Random assignment would result in 0.2% accuracy at a genus level

 Algorithm, benchmarking and results on Global Ocean Sampling data are
described in (Williamson et al, Metagenomic Investigation of Viruses throughout the
Indian Ocean. PLoS One 2012; accepted)

A. Phages with lysogenic cycle (24 viral species, 10 host genera)

Exclude\Predict Host Rank genus family order class phylum rejected

none 89% 96% 94% 99% 97% 2%

species 85% 90% 90% 97% 95% 5%

B. All phages (294 viral species, 33 host genera)

Exclude\Predict Host Rank genus family order class phylum rejected

none 50% 55% 59% 71% 76% 6%

species 43% 49% 54% 68% 75% 7%

 Benchmark was compiled from all NCBI RefSeq Genbank records (Nov 2010)
where a virus had a prokaryotic species identified as a host either by host record
by the naming of the virus

 Among those, lysogenic (those that integrate into host DNA during their lifecycle)
viruses were identified by literature curation for viruses that named a specific host
genome

Parallelization approach
7

 2500 models, 50G on disk, each input sequence has to be scored against
each model

 Coarse-grained parallelism
 Training – one task is to build one ICM (1 min to build one model for a 4.7Mbp

genome, creating 29MB model file)

 Scoring – one task is to score input sequences against one model (12.5 min to
score 1Gbp against one model)

Model
Model
Model

…

Local
reduction

Global
reduction

and
prediction

Aggregate
counts
Output

formatting
Model
Model
Model

…

Local
reduction

HDF5

HDF5

Backends for parallel execution
8

 How MGTAXA workflows (DAGs) will be executed is selected at run-time by a command-line
switch: mgt-classifier –run-mode batchDep –batch-backend makeflow [other options …]

 Implemented choices:

 Serially in one process. No cluster or external workflow support is needed

 Submit itself as a DAG of SGE jobs using qsub job dependency option

 Generate a “make file” for the Makeflow workflow execution engine. Then run makeflow on it with a
choice of its own back-ends:

 Parallel multi-processing on a single node (normally N processes == N cores)

 Submitting multiple SGE jobs while satisfying the dependencies defined by the DAG

 Glide-in mechanism (“dual-level scheduling”) within one or more large MPI jobs. With that,
MGTAXA can run on large XSEDE clusters that only schedule efficiently large parallel MPI jobs

 WorkQueue with a shared file-system option. Advantage for large number of very short jobs.

 Generic LRM interface (define job submit command for the current LRM)

 Makeflow is tolerant to compute node failures, and also has restart capability (like make)

 As a general note, Makeflow seems like a great fit to design Galaxy tools that need to
execute their own massively parallel programmatic workflows (as opposed to interactively
user-defined Galaxy built-in workflows). Makeflow is serverless, zero-administration, and
appears to Galaxy as a single serial job that can be submitted to SGE like any other tool.

Web server - architecture
9

Galaxy
Patched DRMAA runner to

support job file I/O
staging

GridWay
metascheduler

Our Proxy-MAD
(middle-access

driver) requester

Apache Qpid
messaging server Fire

wall

DMZ
disk

Cluster
disk

Our Proxy-MAD
dispatcher

Validation and
untainting of job

requests

LRM
(SGE)

DMZ Intranet

DRMAA

Local copy of
Galaxy on disk
for pristine code
of Galaxy tools

MGTAXA tools
DAGs with 100s of

serial tasks
Choice of execution:
Generate makeflow;

Self-submit with
qsub job

dependencies;
Execute serialy in

one process

Builtin Globus-
MAD (middle-
access driver)
A way to use

Grid sites (e.g.
NSF XSEDE)

TCP Socket

scp

MR-MPI BLAST+ implementation
10

 Runs as a regular MPI program, on any
supercomputer with a shared file system

 Makes high-level API calls to unmodified NCBI
C++ Toolkit – results are fully compatible with
the upstream NCBI code; easy to keep up to date
and support any options of the NCBI BLAST+

 Implemented with MapReduce MPI (MR-MPI)
library from Sandia Lab that helps organizing
computations and data flow

 The library scheduler was modified to solve the
problem of maintaining context between map()
calls – a common problem with the classical
MapReduce algorithm

 Parallel sort for the final output results

 Output: Tabular, NCBI XML, internal binary
format, HDF5

 Special mode for BLASTN metagenomic read
recruitment (compatible with implementation in
Rusch et al, PLoS Biol 2007)

Control flow of the MR-MPI BLAST

MR-MPI BLASTN and BLASTP scaling
11

Scaling chart for MR-MPI BLASTN showing process wall

clock time at different total core counts in MPI job. The

total number of query sequences is 40,000. The

sequences are split into 40 blocks of 400 kbp. Each

block, when combined with one DB partition, forms a

sequential work unit for the MapReduce algorithm. The

data point labels represent time in minutes.

"Useful" CPU utilization per core during the course of the

computation for the MR-MPI BLASTP run with 1024

cores. CPU user time used at any given moment within a

BLAST call was divided by the corresponding wall clock

time, summed over all concurrent calls, and divided by a

total number of cores allocated to the MPI program.

From (Sul and Tovchigrechko, IPDPS, 2011)

CRISPR Analysis Pipeline

 Detects CRISPR arrays and CAS genes (genes as annotated by JCVI protein annotation
pipeline), builds genome diagrams, finds spacer matches to the viral sequences

 Applied in (Yooseph et al, Nature 2010) for the Moore marine genomes collection, 137 marine
genomes sequenced and annotated by JCVI (and previously sequenced 60 other marine
genomes). Demonstrated that the presence of CRISPR system is clearly associated with the life-
style of the organism as related to the chances of its repeated encounters with the same types
of viruses.

 Applied to GOS bacterial assembly and viral reads, several smaller datasets

 The CRISPR finder is batched PILERCR with our post-processing to remove false positives

Assembly contig ORF consensus classifier
13

 Suppose that we have applied a homology-based metagenomic classification pipeline such as JCVI
pipeline working on best BLASTP hits (Tanenbaum et al, Stand. Genomic Sci. 2010) or APIS (Badger
et al, J. Bacteriol. 2006; Allen et al, ISME J. 2012) working on phylogenetic inference.

 And we identify taxonomic composition of our sample by counting individual gene assignments

 In the example below, we would decide that we have all these bugs in whatever proportions

 But, if the annotation was done on sufficiently large metagenomic contigs, we can classify each
contig by a lowest common ancestor node of its ORF assignments where a specified majority vote
(e.g. 75%) is reached.

 Example below is a fragment of a globally abundant SAR86 genome (published in 2011)
searched against the version of Uniref100 from 2010. Our consensus classifier correctly called in
gamma-proteobacteria.

Team
14

 Seung-Jin Sul (HPC tools)

 Tim Prindle (Proxy MAD)

 Shibu Yooseph (co-PI, metagenomics expertise)

 Shannon Williamson (original idea to work on
bacteriophage-host prediction tool)

 Funding: NSF 0850256, DOE DE-FC02-02ER63453

