
Introduction to Galaxy

Johns Hopkins University 13 April 2012

Dave Clements, Emory University http://galaxyproject.org/ Institute of Genetic Medicine

Salzberg Lab

Reddy & Sollner-Webb Labs

-Galaxy

- 9:00 Welcome, Basic Analysis
- 10:00 Galaxy Overview
- 10:20 Break
- 10:45 NGS Analysis I
- 12:00 Lunch
- 12:45 NGS Analysis II
 - 1:45 Visualization and Visual Analytics
 - 2:05 Persistence, Workflows, Sharing & Publishing
 - 2:30 Break
 - 3:00 Do your own analysis
 - 4:30 Done

Goals for this workshop

- 1. Introduce Galaxy
- 2. Hands-on experience:
 - Load and integrate data from online resources
 - Perform bioinformatics analysis with Galaxy
 - Save, share, describe and publish your analysis
 - Visualize your results

This workshop will not cover details of how the tools are implemented or new algorithm designs or which assembler or mapper or ... is best for you. Hands On: Basic Analysis

On pig chromosome 18, which coding exons have the most repeats in them?

http://cloud1.galaxyproject.org (gold) http://cloud2.galaxyproject.org (sable)

Repititous Pigs: A Rough Plan

- Get some data
 - Coding exons on chromosome 18
 - Repeats on chromosome 18
- Mess with it
 - Identify which exons have repeats
 - Count repeats per exon
 - Save, download, ... exons with most repeats.

(~ http://usegalaxy.org/galaxy101)

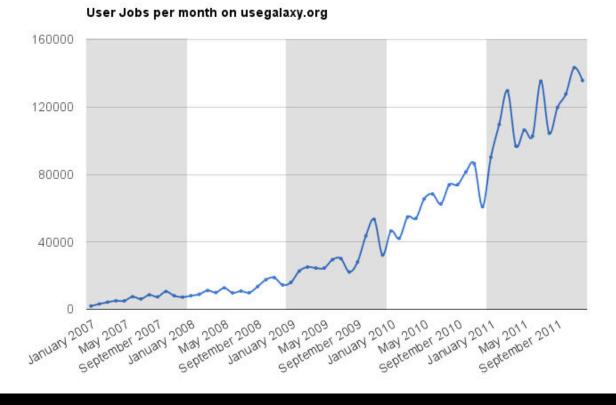
The Motivation Slide

Next Generation Genomics: World Map of High-throughput Sequencers Nick Loman, James Hadfield

http://pathogenomics.bham.ac.uk/hts/

- 9:00 Welcome, Basic Analysis
- 10:00 Galaxy Overview
- 10:20 Break
- 10:45 NGS Analysis I
- 12:00 Lunch
- 12:45 NGS Analysis II
 - 1:45 Visualization and Visual Analytics
 - 2:05 Persistence, Workflows, Sharing & Publishing
 - 2:30 Break
 - 3:00 Do your own analysis
 - 4:30 Done

What is Galaxy?


- A data analysis and integration tool
- A free (for everyone) web service integrating a wealth of tools, compute resources, terabytes of reference data and permanent storage
- Open source software that makes integrating your own tools and data and customizing for your own site simple
- These options result in several ways to use Galaxy

http://galaxyproject.org

http://usegalaxy.org (a.k.a Main)

- Public web site
- Anybody can use it
- Hundreds of tools
- Persistent
- + 500 users / month
- ~100 TB of user data
- ~140,000 analysis jobs / month

http://bit.ly/gxystats

But, it's a big world

Main has lots of tools, storage, processor, users, ...

- But not all tools there are thousands and adding new tools is not taken lightly
- But not infinite storage and processors Main now has job limits and storage quotas

A centralized solution cannot scale to meet data analysis demands of the whole world

Scaling Galaxy

- Encourage local Galaxy instances and Galaxy on the cloud
- Support increasingly decentralized model and improve access to existing resources
- Focus on building infrastructure to enable the community to integrate and share tools, workflows, and best practices

Local Galaxy Instances http://getgalaxy.org

Galaxy is designed for local installation and customization

- Easily integrate new tools
- Easy to deploy and manage on nearly any (Unix) system

Public Galaxy Servers http://galaxyproject.org/wiki/PublicGalaxyServers

Interested in:

ChIP-chip and ChIP-seq? ✓ Cistrome **Statistical Analysis?** ✓ Genomic Hyperbrowser Sequence and tiling arrays? ✓ Oqtans **Text Mining?** ✓ DBCLS Galaxy **Reasoning with ontologies?** ✓ GO Galaxy Internally symmetric protein structures? ✓ SymD

Got your own cluster?

- Move tool execution to other systems
- Galaxy works with any DRMAA compliant cluster job scheduler (which is most of them).
- Galaxy is just another client to your scheduler.

Galaxy CloudMan http://usegalaxy.org/cloud

- Start with a **fully configured and populated** (tools and data) Galaxy instance.
- Allows you to scale up and down your compute assets as needed.
- Someone else manages the data center.
- We are using this today

http://aws.amazon.com/education

Galaxy Community

Annual Community Meting Tool Shed Mailing Lists (very active) Screencasts Events Calendar, News Feed Community Wiki Local Public Installs CiteULike group, Mendeley mirror

http://galaxyproject.org/wiki

New Training Day added July 25

7+ topics, 3 parallel tracks, 12 sessions

- 1. Intro
- 2. Installing
- 3. CloudMan
- 4. Integrating Tools & Sources
- 5. API
- 6. Tool Shed
- 7. Ion Torrent SDK

Training Day

Key Dates April 16: Abstracts due June 11: Early registration ends (early reg is *cheap*)

Galaxy URLs to Remember

http://galaxyproject.org http://usegalaxy.org http://getgalaxy.org

- 9:00 Welcome, Basic Analysis
- 10:00 Galaxy Overview
- 10:20 Break
- 10:45 NGS Analysis I
- 12:00 Lunch
- 12:45 NGS Analysis II
 - 1:45 Visualization and Visual Analytics
 - 2:05 Persistence, Workflows, Sharing & Publishing
 - 2:30 Break
 - 3:00 Do your own analysis
 - 4:30 Done

- 9:00 Welcome, Basic Analysis
- 10:00 Galaxy Overview
- 10:20 Break
- 10:45 NGS Analysis I
- 12:00 Lunch
- 12:45 NGS Analysis II
 - 1:45 Visualization and Visual Analytics
 - 2:05 Persistence, Workflows, Sharing & Publishing
 - 2:30 Break
 - 3:00 Do your own analysis
 - 4:30 Done

RNA-seq Exercise

http://usegalaxy.org/u/jeremy/p/galaxy-rna-seq-analysis-exercise

http://bit.ly/gxyRNASEX

http://cloud1.galaxyproject.org (gold) http://cloud2.galaxyproject.org (sable)

RNA-seq Exercise: A Plan

- Get input datasets; hg18, will mostly map to chr19
- Look at quality
- Trim as we see fit.
- Map the reads to the human reference using Tophat
- Run Cufflinks on Tophat output to assemble reads into transcripts
- Maybe run Cuffcompare and Cuffdiff

- 9:00 Welcome, Basic Analysis
- 10:00 Galaxy Overview
- 10:20 Break
- 10:45 NGS Analysis I
- 12:00 Lunch
- 12:45 NGS Analysis II
 - 1:45 Visualization and Visual Analytics
 - 2:05 Persistence, Workflows, Sharing & Publishing
 - 2:30 Break
 - 3:00 Do your own analysis
 - 4:30 Done

- 9:00 Welcome, Basic Analysis
- 10:00 Galaxy Overview
- 10:20 Break
- 10:45 NGS Analysis I
- 12:00 Lunch
- 12:45 NGS Analysis II
 - 1:45 Visualization and Visual Analytics
 - 2:05 Persistence, Workflows, Sharing & Publishing
 - 2:30 Break
 - 3:00 Do your own analysis
 - 4:30 Done

Two RNA-seq Papers

NATURE METHODS | REVIEW

Computational methods for transcriptome annotation and quantification using RNA-seq

Manuel Garber, Manfred G Grabherr, Mitchell Guttman & Cole Trapnell

Affiliations | Corresponding author

Nature Methods **8**, 469–477 (2011) | doi:10.1038/nmeth.1613 Published online 27 May 2011 | Corrected online **15 June 2011**

NATURE PROTOCOLS | PROTOCOL

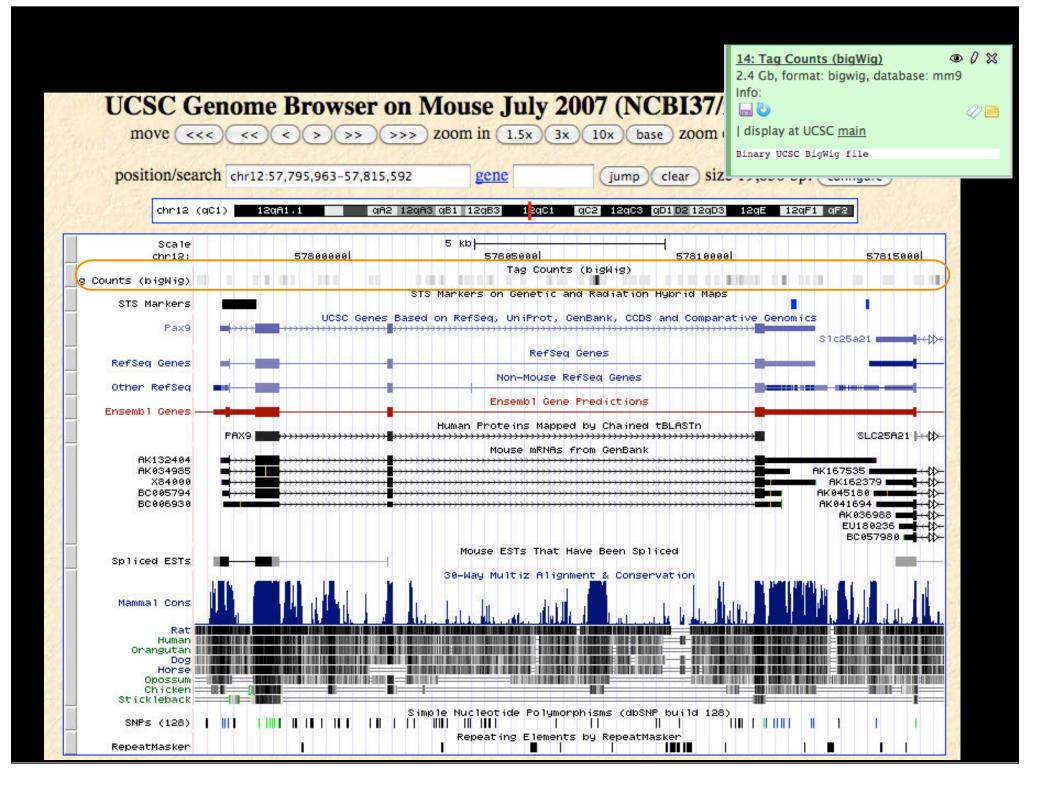
Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks

Cole Trapnell, Adam Roberts, Loyal Goff, Geo Pertea, Daehwan Kim, David R Kelley, Harold Pimentel, Steven L Salzberg, John L Rinn & Lior Pachter

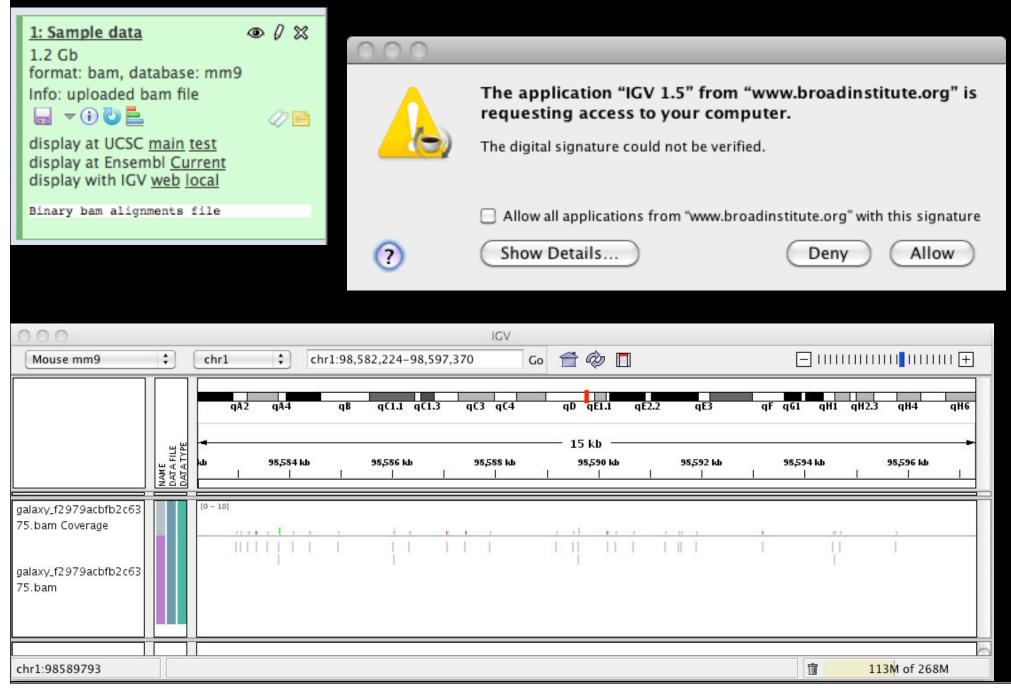
Affiliations | Contributions | Corresponding author

Nature Protocols **7**, 562–578 (2012) | doi:10.1038/nprot.2012.016 Published online 01 March 2012

- 9:00 Welcome, Basic Analysis
- 10:00 Galaxy Overview
- 10:20 Break
- 10:45 NGS Analysis I
- 12:00 Lunch
- 12:45 NGS Analysis II
 - 1:45 Visualization and Visual Analytics
 - 2:05 Persistence, Workflows, Sharing & Publishing
 - 2:30 Break
 - 3:00 Do your own analysis
 - 4:30 Done


Visualize

Send data results to **external** genome browsers **Trackster:** Galaxy's genome browser


External Genome Browsers

UCSC Ensembl GBrowse

IGV

Integrative Genomics Viewer (IGV)

Galaxy

- tool integration framework
- heavy focus on usability
- sharing, publication framework

Genome Browser

- physical depiction of data
- visually identify correlations
- + find interesting regions, features

Galaxy

- tool integration framework
- heavy focus on usability
- sharing, publication framework

Trackster

Genome Browser

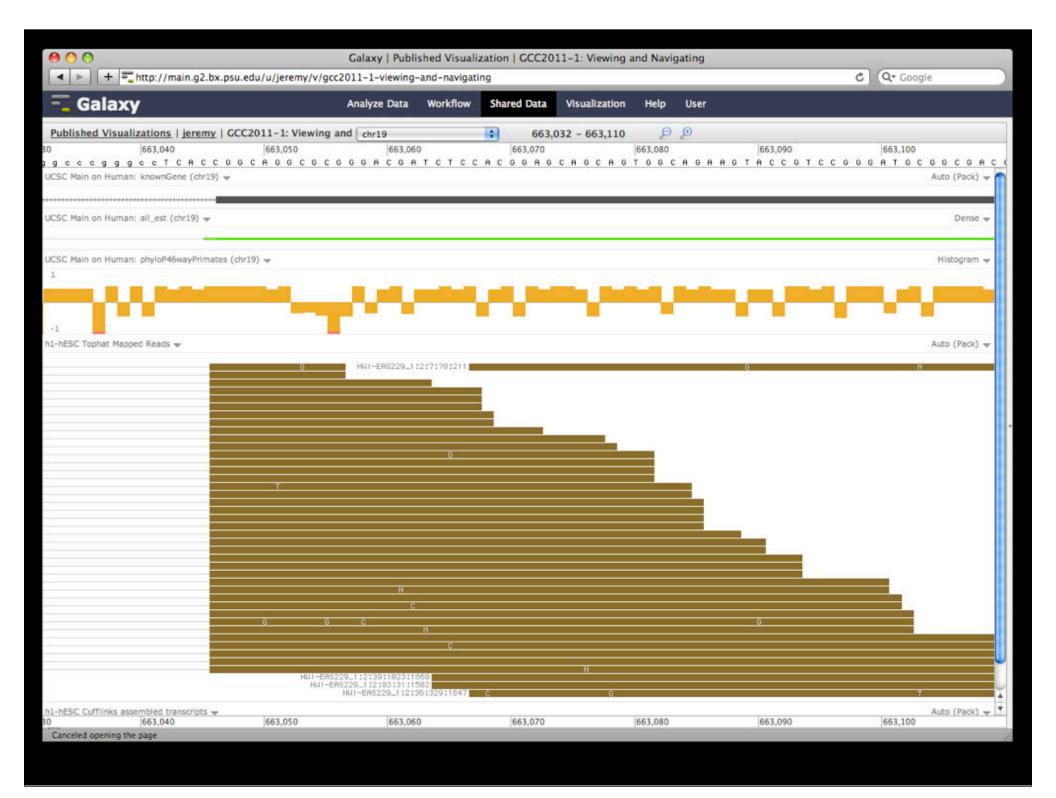
- + physical depiction of data
- visually identify correlations
- + find interesting regions, features

Trackster

View your data from within Galaxy

- No data transfers to external site
- Use it locally, even without internet access

Supports common filetypes


+ BAM, BED, GFF/GTF, WIG

Unique features

- custom genomes
- highly interactive

O O O O O O O O O O O O O O O O O O O	Galaxy Published Visualization GCC2011-1: Viewing and Navigating cc2011-1-viewing-and-navigating C Q+ Google							
- Galaxy		Shared Data Visualization	Help User					
Published Visualizations jeremy GCC2011-1: Viewing and 0 0 1,000,000 UCSC Main on Human: knownGene (chr19) •	d (chr19	1,290 - 4,168,475 2,000,000	₽ ₽ 3,000,000	4,000,000 Auto (Squish) 🛩				
	1000 July (\$11)		- solodina a di ard∏l	₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩				
UCSC Main on Human: all_est (chr19) 👻				Auto (coverage histogram) 👻				
UCSC Main on Human: phyloP46wayPrimates (chr19) 🗢 1		• •	•	Histogram 👻				
-1 h1-hESC Tophat Mapped Reads - 8732		ا باه اه ا		Auto (coverage histogram) 👻				
h1-hESC Cufflinks assembled transcripts 🛩	aran Ni na Ma			Auto (Squish) 🛩				
0 1,000,000		2,000,000	3,000,000	4,000,000				
working a streng								

	Galaxy Published Visualization GCC2011-1: Viewing and Navigating + = http://main.g2.bx.psu.edu/u/jeremy/v/gcc2011-1-viewing-and-navigating								
Galaxy			kflow Shared Data	Visualization Help Us		Google			
Published Visualizations jeremy GCC2011 [630,000 UCSC Main on Human: knownGene (chr19) マ UCSC Main on Human: all_est (chr19) マ UCSC Main on Human: phyloP46wayPrimates (chr19) マ 1 -1 h1-hESC Tophat Mapped Reads マ	-1: Viewing and [640,000	chr19	625,7 650,000	Visualization Help Us 19 - 682,581 660,000	ser	680,000 Auto (Squish) - Dense - Histogram -			
630,000	640,000		650,000	660,000	670,000	680,000			
Display a menu									

But really, why another genome browser

From static browsing to visual analysis

Visual feedback and experimentation needed for complex tools with many parameters

Leverage Galaxy strengths: a very sound model for abstracting interfaces to analysis tools and already integrates an enormous number

Dynamic Filtering

Integrating Tools and Visualization

🗧 Galaxy		Analyze Data	Workflow	Shared Data	Visualization	Admin	Help	User		
GCC3: Running Tools (hg19)		chr19		• 1	,523,098 - 1,54	5,232	₽ ₽			12010
		1,530,000	6						1,540,0	000
UCSC Main on Human: knownGene	r									
021tj.2 021tl.1 021tk.2	·····	······		······		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
h1-hESC Tophat mapped reads 🗢										
						•• ••				
h1-hESC assembled transcripts - regi	on=[all], parameter	s=[150000, 0.5, 0.05,	No] 🗢							
Cufflinks										
Max Intron Length	150000									
Min Isoform Fraction	0.5									
Pre MRNA Fraction	0.05									
Perform quartile normalization	No 🗘									
(Run on complete dataset) (Run o	n visible region									
FF.138.1	·····	······		CUFF.139.1	······	CUFF.140	0.1 <mark>>></mark> UFF.141.1	••••••••••••••••••••••••••••••••••••••	⊷ .	

- 9:00 Welcome, Basic Analysis
- 10:00 Galaxy Overview
- 10:20 Break
- 10:45 NGS Analysis I
- 12:00 Lunch
- 12:45 NGS Analysis II
 - 1:45 Visualization and Visual Analytics
 - 2:05 Persistence, Workflows, Sharing & Publishing
 - 2:30 Break
 - 3:00 Do your own analysis
 - 4:30 Done

Some Galaxy Terminology

Dataset:

Any input, output or intermediate set of data + metadata History:

A series of inputs, analysis steps, intermediate datasets, and outputs

Workflow:

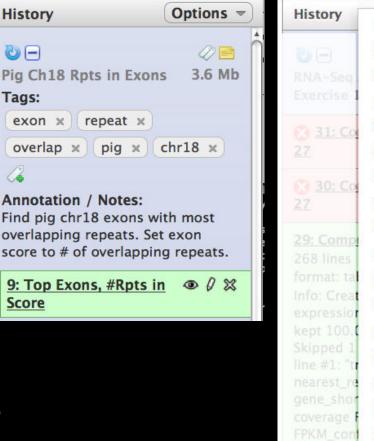
A series of analysis steps

Can be repeated with different data

Share:

Make something available to someone else

Publish:


Make something available to everyone

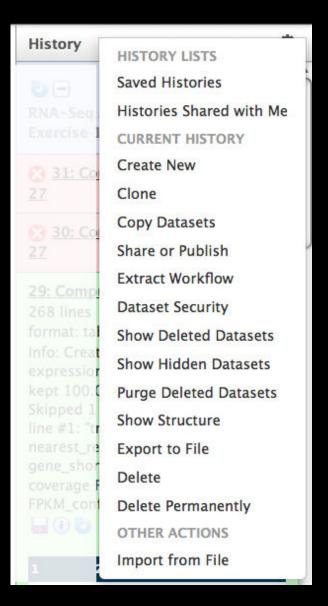
Managing Histories and Datasets

Give every history and dataset a clear name

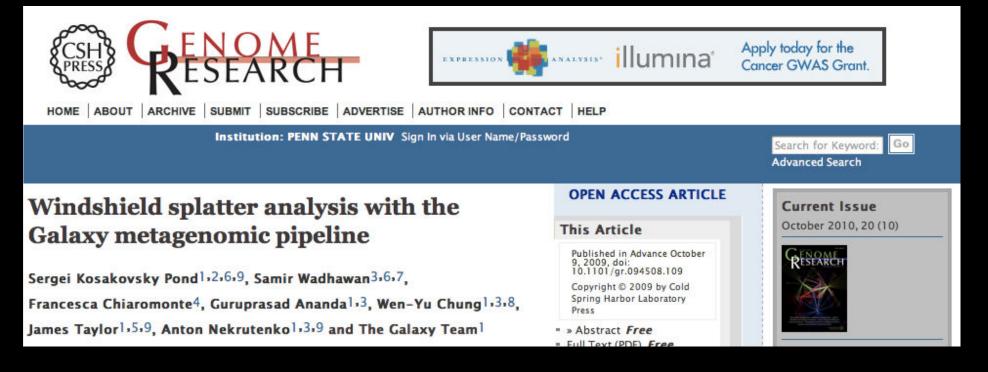
Datasets and histories can also have annotation and tags

Each history has an options/actions list

HISTORY LISTS Saved Histories Histories Shared with Me CURRENT HISTORY Create New Clone **Copy Datasets** Share or Publish Extract Workflow Dataset Security Show Deleted Datasets Show Hidden Datasets **Purge Deleted Datasets** Show Structure Export to File Delete **Delete Permanently** OTHER ACTIONS Import from File

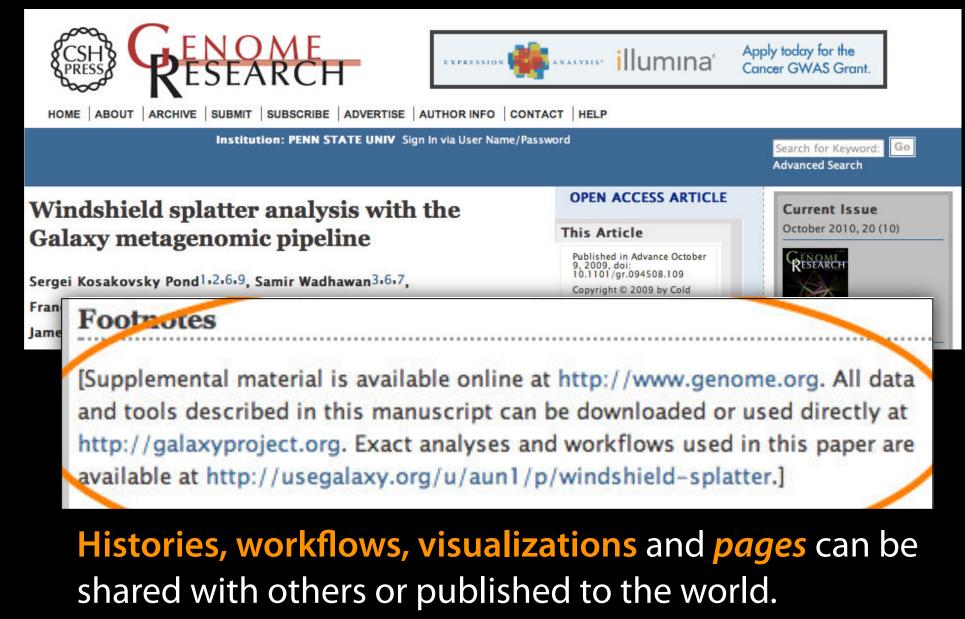

Reuse & Workflows

Histories


Datasets from previous histories can be imported into current one. Resume any previous history Current history can be cloned

Workflows

Can be extracted from any history Allows you rerun analysis with different inputs, settings


Sharing and Publishing Your Work

Histories, workflows, visualizations and *pages* can be shared with others or published to the world.

http://usegalaxy.org/u/aun1/p/windshield-splatter

Sharing and Publishing Your Work

http://usegalaxy.org/u/aun1/p/windshield-splatter

Sharing for Galaxy Administrators Too

Data Libraries Make data easy to find

Genome Builds

Care about a particular subset of life?

Galaxy Tool Shed

Wrapping tools and datatypes

Galaxy Tool Shed

- Allow users to share "suites" containing tools, datatypes, workflows, sample data, and automated installation scripts for tool dependencies
- Integration with Galaxy instances to automate tool installation and updates

toolshed.g2.bx.psu.edu

- 9:00 Welcome, Basic Analysis
- 10:00 Galaxy Overview
- 10:20 Break
- 10:45 NGS Analysis I
- 12:00 Lunch
- 12:45 NGS Analysis II
 - 1:45 Visualization and Visual Analytics
 - 2:05 Persistence, Workflows, Sharing & Publishing
 - 2:30 Break, but first ...
 - 3:00 Do your own analysis
 - 4:30 Done

Try it now: http://UseGalaxy.org

Develop and deploy: http://GetGalaxy.org

Dannon Baker

Jeremy Goecks

Dave Clements

Guru Ananda

Nate Coraor

James Taylor

Enis Afgan (IRB)

Ross Lazarus (Baker IDI, Harvard)

Jennifer Jackson

Greg von Kuster

Dan Blankenberg

Anton Nekrutenko

Supported by the **NHGRI** (HG005542, HG004909, HG005133), **NSF** (DBI-0850103), Penn State University, Emory University, and the Pennsylvania Department of Public Health

http://GalaxyProject.org

Try it now: http://UseGalaxy.org

Develop and deploy: http://GetGalaxy.org

Supported by the **NHGRI** (HG005542, HG004909, HG005133), **NSF** (DBI-0850103), Penn State University, Emory University, and the Pennsylvania Department of Public Health

http://GalaxyProject.org

Thanks

Mohammed Heydarian

Reddy Lab Salzberg Lab Sollner-Webb Lab Mary Mangan (OpenHelix)

> + You

Workshop Feedback

Please help.

http://bit.ly/jhufeedback

- 9:00 Welcome, Basic Analysis
- 10:00 Galaxy Overview
- 10:20 Break
- 10:45 NGS Analysis I
- 12:00 Lunch
- 12:45 NGS Analysis II
 - 1:45 Visualization and Visual Analytics
 - 2:05 Persistence, Workflows, Sharing & Publishing
 - 2:30 Break, really
 - 3:00 Do your own analysis
 - 4:30 Done

- 9:00 Welcome, Basic Analysis
- 10:00 Galaxy Overview
- 10:20 Break
- 10:45 NGS Analysis I
- 12:00 Lunch
- 12:45 NGS Analysis II
 - 1:45 Visualization and Visual Analytics
 - 2:05 Persistence, Workflows, Sharing & Publishing
 - 2:30 Break
 - 3:00 **Do your own analysis**
 - 4:30 Done

Workshop Feedback

Please help.

http://bit.ly/jhufeedback