Friedrich Miescher Institute for Biomedical Research

11/15/11

Using Galaxy to provide a NGS Analysis Platform

Hans-Rudolf Hotz (hrh@fmi.ch)

Friedrich Miescher Institute for Biomedical Research Basel, Switzerland

working with NGS data is fascinating because

- there is a different instrument on the market every few months
- Scientists come up with new kind experiments
- new algorithms to deal with NGS data are developed continuously

working with NGS data is difficult because

people with different background/training are interested in using NGS

the "average" lab scientist is looking for the red button to press

bizarre output from the sequencer

publication in *Nature*

the "average" statistician is creating wonderful blots.....

http://galaxyproject.org/

Galaxy

"Galaxy is an open, web-based platform for data intensive biomedical research. Whether on the free public server or your own instance, you can perform, reproduce, and share complete analyses."

The Galaxy Team is a part of BX at Penn State, and the Biology and Mathematics and Computer Science departments at Emory University.

The Galaxy Project is supported in part by NSF, NHGRI, The Huck Institutes of the Life Sciences, The Institute for CyberScience at Penn State, and Emory University.

http://galaxyproject.org/

....and I am NOT part of the Galaxy Team!

I am just a member of the worldwide community of many Galaxy users, adopters, developers, evangelists, etc.

what is Galaxy?

Galaxy

- provides a GUI to Bioinformatics tools
- manages/stores your (raw) data and results
- allows you to create workflows
- allows sharing and reproducing your analysis

public Galaxy instance:

http://usegalaxy.org

Friedrich Miescher Institute for Biomedical Research

Galaxy

it is really simple to install

requirements:

- Python (2.5 or 2.6)
- Mercurial

just 3 commands:

- hg clone https://bitbucket.org/galaxy/galaxy-dist/
- cd galaxy_dist
- sh run.sh

...and it is ready (on linux and Mac) at:

http://localhost:8080

why are we using Galaxy

Galaxy

- open source (http://wiki.g2.bx.psu.edu/Admin/License)
- we can modify the tools
- we can add our own tools
- it is part of a wider community: "GenomeSpace", "GMOD"
- it is flexible and simple to install

Friedrich Miescher Institute for Biomedical Research

how does it work Galaxy Options -History Analyze Data Workflow Shared Data Help User Using 113 bytes History Ontions a ##aff-version 2 ##bed_to_gff_converter.py foo bed2gff region_0 2 2 region 0 DA 113 bytes 2: BED-to-GFF on data 1 @ 0 🖄 1: Pasted Entry .0% view in GeneTrack alignment 1.Chrom 2.Start 3.End AXT to FASTA Converts BED-to-GFF (version 2.0.0) foo 1.1 2 formatted file to FASTA <u>AXT to LAV</u> Converts a Convert this query: formatted file to LAV for 1: (as bed) Pasted Entry 🛟 BED-to-GFF converter Execute FASTA-to-Tabular con GFF-to-BED converter LAV to BED Converts a LAV formatted file to BED format Maf to BED Converts a MAF Friedrich Miescher Institute formatted file to the BED format for Biomedical Research

what kind of tools do you get

Galaxy

input tools:

- text box / upload file / url
- access to a local file system ("Data Libraries")
- access to UCSC table browser and ensembl biomart

text manipulation tools:

- file conversion
- table calculation
- operation on genomic intervals

wrappers (and GUIs):

EMBOSS, NCBI BLAST+, NGS: QC and manipulation, Picard, NGS: Mapping, NGS: Indel Analysis, NGS: RNA Analysis, SAM Tools, GATK Tools, NGS: Peak Calling, and much more...

Friedrich Miescher Institute for Biomedical Research

do you really need all the tools Galaxy NGS: QC and manipulation FASTOC: FASTO/SAM/BAM FASTX-TOOLKIT FOR FASTO MANIPULATION Fastqc: Fastqc QC using FastQC from Babraham Quality format converter (ASCII- Filter FASTQ reads by guality ILLUMINA FASTQ Numeric) score and length FASTQ Groomer convert Compute quality statistics FASTQ Trimmer by column between various FASTQ quality Draw quality score boxplot FASTQ Quality Trimmer by formats sliding window FASTQ splitter on joined paired Draw nucleotides distribution end reads chart FASTQ joiner on paired end FASTQ to FASTA converter reads Filter by guality FASTQ Summary Statistics by column Remove sequencing artifacts end reads ROCHE-454 DATA Barcode Splitter Build base guality distribution <u>Clip</u> adapter sequences

- Select high quality segments Combine FASTA and QUAL into FASTO
- AB-SOLID DATA
- Convert SOLiD output to fastq Compute quality statistics for
- SOLiD data

- Collapse sequences
- Rename sequences
- Reverse-Complement
- Trim sequences

Draw quality score boxplot for SOLID data

Friedrich Miescher Institute for Biomedical Research

from the laptop to a production environment

- remove the tools you don't want
- switch from SQLite to PostgreSQL or MySQL
- use a proxy server
- authenticate users externally via Kerberos or LDAP
- use a 'big' server
- use a compute cluster (TORQUE PBS, PBS Pro, Platform LSF, and Sun Grid Engine)

Friedrich Miescher Institute for Biomedical Research

or use the "cloud" Galaxy http://usegalaxy.org/cloud (using "Amazon Elastic Compute Cloud") Enis Afgan, et al. Harnessing cloud computing with Galaxy Cloud Nature Biotechnology 29, 972-974, Published online 08 November 2011 www.nature.com/nbt/journal/v29/n11/full/nbt.2028.html

Friedrich Miescher Institute for Biomedical Research

adding your own tools

everything is possible in Galaxy

As long as you can run it on the command line, you can incorporate it into Galaxy.

- add the executable or script (perl, python, bash, R, etc)
- write a tool definition file
- add it to the list of tools

Friedrich Miescher Institute for Biomedical Research

Galaxy

Galaxy Tool Shed

Galaxy

Friedrich Miescher Institute

for Biomedical Research

enables sharing of tools across the Galaxy community.

Galaxy Tool Shed	Categories	Categories						
earch • Search for valid tools	search repository name, desc	search repository name, description						
Search for workflows	Name	Description	Repositories					
epositories	Assembly	Tools for working with assemblies	12					
Browse by category	Computational chemistry	Tools for use in computational chemistry	2					
Browse all repositories	Convert Formats	Tools for converting data formats	13					
 Login to create a repository 	Data Source	Tools for retrieving data from external data sources						
	Fasta Manipulation	Tools for manipulating fasta data	17					
	 Genomic Interval Operations 	Genomic Interval Operations Tools for operating on genomic intervals						
	Graphics	Tools producing images	8					
	Next Gen Mappers	Tools for the analysis and handling of Next Gen sequencing data	24					
	Ontology Manipulation	Tools for manipulating ontologies	3					
	SAM	Tools for manipulating alignments in the SAM format	8					
	Sequence Analysis	Tools for performing Protein and DNA/RNA analysis	44					
	SNP Analysis	Tools for single nucleotide polymorphism data such as WGA	4					
	Statistics	Tools for generating statistics	8					
	Text Manipulation	Tools for manipulating data	14					
	Visualization	Tools for visualizing data	9					

http://toolshed.g2.bx.psu.edu/

<command>bed to gff converter.py \$input \$out file1</command>

<inputs>

<param format="bed" name="input" type="data" label="Convert this"/>
</inputs>

<outputs>
 <data format="gff" name="out_file1" />
</outputs>

-

<help>

This tool converts data from BED format to GFF format </help>

</tool>

no need to define/design a GUI !
 Friedrich Miescher Institute
 for Biomedical Research

Galaxy

what happened to the poor guy sitting at the Bioinformatics Helpdesk....

The NGS pipeline at the FMI is Galaxyjust a bunch of Perl scripts (currently) which can be easily added to Galaxyjust a simple file system (currently)which cannot be added to Galaxy. (Galaxy uses its own data directory) we don't have to, we just have to give Galaxy access to the directory (without using "Data Libraries") Friedrich Miescher Institute for Biomedical Research a simple NGS workflow Galaxy

- do you need the result (ie the alignment) as a new history item?
- does your tool require a Galaxy history item as input?

History	Options 👻			
00	4 🖻			
my famous experime	ent again			
3: BED file	• / %			
2: Alignemt log	• / X			
2. Alighemetog				

- the 'famous aligner' has a wrapper storing the BAM file in the central NGS repository and creating just a log file for Galaxy
- your 'famous extract tool' knows the location of the NGS repository

FINI Friedrich Miescher Institute for Biomedical Research

makes it easier to share with non-Galaxy users

successfully finished annotation of sampleId 20110518 to dm3-dmV01-aln2

and now the command line geek can do

[geek@xenon1 ~]\$ extractData.pl -f -s p -m									
100 -i mySampleId_20110518 dm3-dmV01-aln2									
genome	frag2be	d.pl -t	-q-U-	head	-5				
track n	ame='myS	ampleId_	20110518	1					
chr2L	10493	10528	sq39319	1	+				
chr2L	10736	10764	sq74484	1	+				
chr2L	11442	11477	sq1340	1	+				
chr2L	13799	13834	sq84955	1	+				
[geek@xenon1 ~]\$									

storing data outside of Galaxy

-Galaxy

makes it easier to share with non-Galaxy users

-	Galax	y / FM	li⊬Xeno	W Irkflow	Shared Data	Lab	Visualization		Admin	Help	User	
succ	essfully	finished	annotation	of sample	_20110518 to	dm3-d	imV01-aln2	*	<u>3: BED</u>	file Iment lo	eriment a	Options ▼
											ch Mieso	cher Institu Research

makes it easier to share with non-Galaxy users

command line

```
extractData.pl -f -s p -m 100 -i
mySampleId_20110518 dm3-dmV01-aln2 genome
frag2bed.pl -t -q -U -
```

Galaxy tool definition file

#elif (\$summary.mode=="bed")#extractData.pl
-f \$strand \$maxhits \$ignCnts
\$sampleSelect.sampleId \$genome-\$annot-aln2
genome | frag2bed.pl -t -q \$summary.ucsc > \$output

Friedrich Miescher Institute

and doing the same in Galaxy

				Extra	ct data (step	2 of 2)			
l.	Extract data (s	step 1 of 2)	Stran	d selection:				
	Sample select	ion:		Ignore strand (use all)					
trad	ck name='mys	SampleId	20110518				History	Options -	
chr		10528	sq39319		+				
chr	2L 10736	10764			+		0		
chr	2L 11442	11477	sq1340	1	+				
chri	2L 13799	13834	sq84955	1	+		my famous experiment again	17.9 Mb	
chri	2L 13940	13974	sq9998	1	+				
chri	2L 13948	13979	sq2852	1	+		3: BED file	.08	
chri	2L 14266	14301	sq29828	1	+				
chra	2L 14381	14414	sq62373	1	+		2: Alignemt log		
chri	2L 14612	14645	sq50170	1	+		2. Alignemic log		
chr	2L 15215	15250	sq7575	1	+			1107 11 <u>2</u> 00000	
chra	2L 18459	18490	sq20174	1	+		<u>1: fastq file</u>	• 0 ×	
chra	2L 21264	21295	sq20174	1	+				
chri	2L 67455	67489	sq31577	1	+				
chri	2L 72882	72916	sq470	1	+				
chra	2L 75216	75251	sq16959	1	+				
chri	2L 75381	75416	sq21962	1	+				
chri	2L 75416	75451	sq58948	1	+				
chra	2L 76053	76088	sq54784	1	+				
chra	2L 85320	85355	sq58664	1	+				
chri	2L 101308	101343	sq2012	1	+				
chr	2L 102620	102655	sq9815	1	+				
chri	2L 103097	103132	sq63047	1	+				
chr	2L 103605	103640	sq50914	1	+				
chr	2L 103769	103802	sq69218	1	+				
chr	21. 103855	103890	sq58865	1	+				

Galaxy

for Biomedical Research

Bioinformatics

Swiss Institute of Bioinformatics

