
Although it may appear 

trivial, we would like to 

share our experiences 

by this mindmap, 

hopefully preventing 

others from issues in a 

way or two. 

Developing a cross-connecting IT infrastructure 

from scratch is a multi-step, partially circular 

process peppered with several potential pitfalls 

(blue). Many of those as well as the insights (red) 

derived over the last years are not specific for an 

NGS data system, but generic for similar projects. 

Features: 
• server-based 
• connective 
• standardized 
• generic 
• modular 

Objectives: 
• central 
• cross-linking 
• flexible 
• scalable 
• broad range 

Practical experiences from the Munich NGS-FabLab 
– 

Tools, compatibility and pitfalls off the standard track 
Aarif Mohamed Nazeer Batcha2, Sebastian Schaaf 1,2, Guokun Zhang2, Sandra Fischer2, 
Ashok Varadharajan2, Ulrich Mansmann1,2 

1 German Cancer Consortium (DKTK), Heidelberg, Germany 
2 Department of Medical Informatics, Biometry and Epidemiology (IBE), Ludwig Maximilians University (LMU) Munich, Germany 

The NGS-FabLab is the first multi-institutional IT infrastructure for research at the 

university hospital and medical faculty of the LMU (which are in fact two juristic persons) 

in Munich, supporting molecular biomedical and clinical researchers from basic research 

up to experimental diagnostics and translational studies. Also due to data security laws a 

focus is set on human-derived samples, but not restricted to (mice, microbes, …). 

Create configuration file 
• editor-derived or 

• interactive from command line or 

• Galaxy web form 

Preliminary inquiry 
• root user? 

• shell environment? 

• process user inputs 

• list tools to be installed 

• connect to repositories required for installation 
procedure 

 Scripts for uninstalling tools are 
partially available (on going) 

The essence: a shell setup script 

Galaxy Installation 
• set proxies 

• galaxy user setup, human users, permissions 

• get Galaxy and update (own repo or official galaxy-
dist) 

• Backup important files and folders 
(universe_wsgi.ini, tool_conf.xml,  
tool_data_table_conf.xml, folders tools and 
tool-data) 

• Edit universe_wsgi.ini in accordance with the 
configuration file 

 
Tools installation (home scheme; opt.) 
• Download, extract and install specified tools from our 

repository 

• Integrate tools‘ version control in Galaxy interface (on 
going) 

• Install libraries and supporting tools 

• Download and install tool wrappers from our repository 

• Edit tool_conf.xml, tool_data_table_conf.xml, 
tool specific .loc files and .bashrc 

 

 

 

Reference genomes 
• currently hg18 and hg19 with tool-specific index files 

and dictionaries 

• microbial genomes in preparation 

Further system-wide setups/settings (opt.) 
• Apache with configurations and customized webpage 

• PostgreSQL database and configurations 

• Active Directory connection in preparation 

 

Configuration file setup: Command line dialog 

Crowd-reviewed open 
source code may be far 
from being error-free 

Never 
underestimate 
the social layer 

Co-operation is essential: 
talk & exchange knowledge 

Refer to as many 
standards as possible 
(do not try to reinvent the wheel) 

Align to well-established 
pipelines/workflows as 
templates 

Moving montains 
does not work as 
a one-man show 

Integrate the 
local admins 

Facts come from 
the working level 
(bottom-up) 

Decisions come 
out of politics 
(top-down) 

be patient… 

Students are unbelievable 
invaluable staff members 

SLES issues: 
• Python versions (SLES @ v2.6 vs. 

e.g. QIIME @ v2.7) 

• Java (IBM vs. Oracle package) 

• Apache modules 
• … 
Use SLES dev repos and 

compile a lot (home scheme) 
 
Tool level issues: 
• Many tools for one task (and 

many insufficient) 

• Incompatibilities esp. between 
toolboxes 

• Disregarded standards 
• Missing or bugged wrappers 
• Versioning & control 
• Outputs: HTML-based 

download links (no further data 
objects available for processing) 

• … 
 be careful & expect to write 

many snippets on your own 
 
Pipelines: 
• Porting from command line to 

Galaxy may get fiddly 
• Custom script may make some 

unexpected additional work    
(if the respective tasks cannot be 
covered by stock tools) 

 take your time 
 for prototyping and early work 

stick to approved pipelines   
(in-house, Broad Institute etc.) 

 
References: 
• versioning also here difficult 
• custom indeces: download 

vs. self-built 
read the docs carefully 
 

Connections setup (opt.) 
• NFS remote sites (storage, shared tmp) 

• SGE Cluster(s) (on going) 

requirements 
and tasks 

organizational 
structure 

financing 
menpower (3-5 
positions min.) 

setting/ 
conditions 

deciders 
& makers 

survey 

record in 
writing 

who‘s in, 
who‘s out? 

related 
projects 

workshops & 
conferences 

know local the 
constraints/policies 

cooperative 

common 
knowledge base 

accounts & permissions: 
which for whom? 

define alpha 
projects & partners 

exclude 
troublemakers 

modular 

include 
students! 

interdisciplinary flexible 

share! 

conflicts 

bugs and 
gaps in code 

extra time 
needed 

intellectual 
property 

financing 

licenses 

partial 
interests 

existing open 
source packages 

lack of 
interest 

strategical shifts 
(re-alignments) social 

incompatibilities 
& version issues 

fitting 
accuracy 

projects in 
parallel 

validation 

unconsidered 
things? 

automation 

goals & 
milestones 

code 
corrections 

improvements 

exchange 
tools 

priorities 

interim 
updates 

extend 
feature list? 

future tracks 

Configuration file setup: Galaxy-based web form 


