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Introduction

Sequence and secondary structure analysis can be used to assign putative
functions to non-coding RNAs (ncRNAs).

However sequence information is changed by post-transcriptional
modifications [1] and secondary structure is only a proxy for the true 3D
conformation of the RNA polymer.

Instead we can use the pattern of processing that can be observed through
the traces left in small RNA-seq reads data.

We propose to encode expression profiles in discrete structures, which can
be processed using fast graph-kernel techniques.

Results

Performance:
» We measured the tendency for transcripts of functionally identical RNAs
to be neighbors.

» We computed the AUC ROC (see Table 1) using the distance as a predictor
function to evaluate the quality of the induced metric.

» We computed the purity of the partition generated by the Markov Cluster
Process [5] to evaluate the clustering quality.

» Binary classification models were built for miRNA, tRNA and C/D-box
snoRNA classes.

We developed BlockClust [2] which allows both clustering and classification Mode —> Clustering Classification
of small ncRNA transcripts with similar processing patterns. NcRNAclass  #transcripts |~ AUC  #clusters  Purity | PPV Recall
MiRNA 168 | 0.896 10 0855 | 0.901 0.886

tRNA 173 | 0741 17 0837 | 0.899 0.796

C/D-box snoRNA /8 0.731 / 0.683 0.870 0.474

H/ACA-box snoRNA 4 0.838 0 0 -NA-  -NA-

rRNA 20 0.872 2 0956 -NA-  -NA-

MethOdS SNRNA / 0.637 0 0 -NA-  -NA-
Y RNA 8 0.685 0 0 -NA-  -NA-

Given the mapped reads we use the blockbuster tool [3] to identify Weighted average 458 | 0.805 36 0813 | -NA- -NA-

consecutive reads called blocks and adjacent blocks called blockgroups.
Each blockgroup is then encoded as a discrete graph. We compute several
attributes for each block, between two consecutive blocks and globally over
the whole blockgroup (see Figure 1). The attributes are then discretized and
used as vertex labels in a graph representation. The resulting graphs are

finally processed using the fast Neighborhood Subgraph Pairwise Distance
Kernel (NSPDK) [4].

Table 1: Performace of BlockClust averaged over 10 random test splits of
DevelopmentData

Comparision with other tools:

We compared BlockClust on the BenchmarkData to existing tools that can
process read profiles of small ncRNAs from RNA-seq data: deepBlockAlign
[6] for clustering and DARIO [/] for classification.

BlockClust achieved a 60-fold speedup (50 seconds vs. 58 minutes on a

T distance=s dataset of =600 profiles) w.r.t. deepBlockAlign.
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Figure 1: Read profile encoding.

Since neighborhood subgraphs can be efficiently enumerated in near linear
time, the resulting approach has in practice linear complexity and can be
used in large scale settings.

DevelopmentData: for training models; human embryoid body,

Hierarchical clustering plot on one of the BenchmarkData samples.
embryonic stem cells,H1 and IMR90 cell lines. > | ustering p p

p tRNA: mixture of tRNA halves, 5 - or 5 -derived fragments.
p MIRNA: typical miRNA and miRNA* blocks.

BenchmarkData: to evaluate robustness; a comprehensive collection of » C/D-box snoRNA: step-wise extension for towards 3'-end.

32 samples from human, mouse, fly, chimp, worm and plant in a variety of
tissues and cell lines.
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