

Locally Managed Galaxy Instances with Access to
External Resources in a Supercomputing Environment

Nuria Lozano1,2, Oscar Lozano2, Beatriz Jorrin1, Juan Imperial3, Vicente Martin2

 1 Center for Biotechnology and Genomics of Plants (CBGP), Technical University of Madrid
 2 Madrid Supercomputing and Visualization Center (CeSViMa), Technical University of Madrid

 3 Center for Biotechnology and Genomics of Plants (CBGP), Technical University of Madrid and CSIC

1. Introduction

Galaxy is a tool that can use resources well beyond those
available to a research group or even to a research center,
especially when huge datasets are going to be used. In this case
the access to shared resources, like those available in
supercomputers centers is a welcome addition to Galaxy
capabilities. However, privacy or flexibility requirements might
impose the need for a locally managed Galaxy installation,
something not possible in a typical, batch-mode oriented facility
such as a supercomputer. In these cases a way to communicate
a local instance of Galaxy, managed by the research lab, with the
supercomputer such that all the heavy work can be offloaded
would be a solution.

Here we present the solution adopted by the Technical University
of Madrid (UPM). UPM manages the Research Campus of
Montegancedo, where the Center for Plant Genomics and the
Madrid Supercomputing and Visualization Center (CeSViMa) are
located.

2. Cluster: Magerit

CeSViMa manages a large heterogeneous cluster, called
Magerit, of about 4,000 Power7 cores and 1,000 Intel ones.
Some of the nodes have special characteristics, like a large
memory footprint or accelerators (either Xeon Phi or Nvidia
K20x).

As it is standard in these installations, Magerit resources are
accessed in batch mode. The resource manager used is SLURM
and the scheduler is MOAB. The standard way to run a job in
Magerit involves to log into one of the interactive nodes, prepare
a job command file and then submit it to one of the batch queues
of the machine.

The challenge was to be able to seamlessly use this system
through a Galaxy front-end.

3. Solution: Collaboration VPS – Cluster

● Production local instance installed in a Virtual Private
Server.

● Jobs are sent to a Cluster (Magerit) and executed there.
● A shared filesystem between the application server (VPS)

and the cluster nodes is required.
● The path to Galaxy must be exactly the same on both the

nodes and the application server. It is the one required by
Magerit.

● Galaxy_user must have the same name and IDs on both. It
is a real and unique Magerit user.

● Some kind of communication is needed between VPS and
Magerit → Command-line/shell interface (CLI) runner
chosen:
➢ Job plug-in specific for SLURM developed
➢ A jobfile is created by VPS in the shared filesystem and

sent to Magerit queue using ssh.
➢ Galaxy process needs to know each job state.
➢ RSA key used in order to avoid typing SSH password.

● Data and results are stored in the shared filesystem.
● PostgreSQl Database added. Located outside VPS

filesystem.
● Apache Proxy to serve web page to the internet.

● Galaxy, PostgreSQL and Apache
installation done from here.

● Runs Galaxy process, which
serves web page at localhost.

● Manages Galaxy Configuration.
● Runs PostgreSQL and Apache.
● Creates Jobfiles and sends them

to Magerit (CLI).

Shared
Filesystem

/gpfs/.../galaxy

Cluster
(Magerit)

 Jobfile

Virtual Private
Server (VPS)

Shell plug-in (ssh)

● Runs Jobs (tools).
● Python modules (eggs)

updated from here.

Stores:
● All Galaxy files.
● Python eggs.
● Datafiles.
● Results.

Data

Results

Data and
scripts

Job
plug-in

CLI

● Proxy requests to the Galaxy
application.

● Compression and caching (web
page).

● Much more work could be done.

Results

Data

Web
Data

6. Conclusions.

By means of this approach, research group members are fully
responsible of deploying and maintaining their own Galaxy Local
Instance, while the heavy work is offloaded to external computing
resources, in this case to CeSViMa (Virtual Server, HPC,
Storage).

7. Acknowledgements

The author thankfully acknowledges the computer resources,
technical expertise and assistance provided by the
Supercomputing and Visualization Center of Madrid (CeSViMa).

Login

Login
Login
Login

GPFS
filesystem

Magerit

Blade Center HS22 Hypervisor

Database

ssh jobsubmit
jobfile

Shared filesystem
/gpfs/.../galaxy

NFS

NFS

Virtual Private
Server

VPS OS

NFS

VPS
filesystem

5. Production Configuration

Apache server

● Install Apache on VPS.
● Use mod_rewrite and mod_proxy.
● Redirect to localhost:port.

PostgreSQL

● Install PostgreSQL on VPS.
● Initialize Database on the external storage path.
● Edit universe_wsgi.ini:

database_connection =
postgres://<dbuser>:<password>@localhost:5432/
<dbname>

Galaxy users

● Users must be logged (no anonymous users allowed).
● In addition, users can only be created by Admin. → More

security.

● Stores Database.

4. Configuration to send Jobs

Command-line/shell interface plugins

● Shell plug-in. Provided by Galaxy. Uses SSH to connect to
Magerit as the assigned user.

● Job plug-in. Developed slurm.py. Creates Jobfiles adapted
to Magerit requirements and interacts with Slurm.
Location: galaxy-dist/lib/galaxy/jobs/runners/cli_job/

Job configuration file

● CLI and local job runners defined.
● Default tools destination uses CLI runner as explained

above.
● UCSC tools, which require external communication, are

mapped to local destination, using therefore local runner.

Fig. 1 Collaboration VPS - Cluster

Fig. 2 Physical implementation abstraction

	Slide 1

