Validation setup for cost-efficient RNA-sequencing of pooled samples

Per Qvist^{1,2}, Anto P. Rajkumar^{1,2}, Jane H. Christensen^{1,2}, Hayan Song³, Qin Wang³ and Anders D. Børglum^{1,2} 1) Department of Biomedicine, Aarhus University, Aarhus, Denmark 2) The Lundbeck Foundation Initiative for Integrative Psychiatric Research, *i*PSYCH 3) BGI Europe

Introduction

Next generation sequencing (NGS) technology provides fast generation of large amounts of data and has revolutionized genetic research. Despite continuous reductions in NGS costs, the methods are still expensive and not routinely applied in low budget projects. Sequencing pools of individual RNA samples can reduce the cost of RNA sequencing but the validity of such pooling strategy to detect differentially regulated genes remains uncertain. Hence, we aimed to validate a RNA sequencing strategy involving pooling of individual RNA samples, derived from brains of genetically modified mice and of their wild genotype littermate controls.

Materials & Methods

Tissue Collection & RNA extraction

Analysis work flow

In the present study, a genetically modifed of C57BI/6 mice were investigated. line Brains were obtained from 8 wild type and 8 transgenic mice and sectioned manually in a 1 mm coronal mouse brain matrix. Micropunches (1 mm in diameter) containing amygdala were collected from each section.

RNA was extracted from tissue using the Maxwell automated system (Promega) and quality assessed on a Agilent 2100 system.

Results

Read and map statistics

	Raw reads	Total mapped ratio	Covered gene ratio
Individual	14561877	69.88%	82.71%
/ild (average)			
ک 8 pool	14624534	69.59%	78.20%
• (average)			
ຼຸດ Individual	15361114	68.82%	82.89%
nod en (average)			
lifie 8 pool	15917878	68.38%	78.82%
a 🚽 (average)			

Saturation analysis

Correlation between two strategies

ROC curve to predict the DEG using the Log₂ **Ratios of expressed genes in Pooled samples**

Reliability of Pooling strategy to identify Differentially Expressed Genes (DEG)

DEG: Log_2 Ratios either above 1.0 or below -1.0 & p value < 0.05

Sensitivity	53.21 %	
Specificity	98.62 %	
Positive predictive value	35.62 %	
Negative predictive value	99.56 %	
Correctly classified genes	98.67 %	

ROC : Receiver Operating Characteristic; DEG: Differentially Expressed Genes

Discussion

Quality of pooled samples were comparable to the individual samples and they yielded similar mappable clean reads as well as covered gene ratios. Correlation between the fold changes of expression of genes, estimated by pooled and individual samples was statistically significant. However, the sensitivity of the pooling strategy to identify differentially expressed genes varied depending on the definition of threshold for the fold changes of gene expression.

Sequencing pools of RNA samples is a reliable strategy to measure the fold changes of gene expression and it substantially reduces the cost of RNA-seq. Pooling strategy is desirable, while working with low amounts of RNA samples. However, the validity of this approach to detect differentially expressed genes demands further evaluation.

Investigations to validate the identified differentially expressed genes by qPCR and by Ion Proton RNA sequencing are currently ongoing.

