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Approaches for analyzing RNA-seq data 

              

 

Differential expression (DE) and differential exon usage (DEU) in RNA-seq data are commonly 
investigated by Cufflinks and Cuffdiff at the moment. However, previous work demonstrated 
that Cuffdiff, prior to version 2, does not capture the biological variation between groups 
containing many replicates. Therefore, we set out to implement two R-based methods (edgeR 
and DEXSeq) in Galaxy and to compare their performance with a recent release of Cuffdiff2. 
 

The rapid evolution of NGS technologies together with decreasing costs create a challenge of 
storing and analyzing the vast amount of sequencing data generated by experimental biologists. 
Configuring suitable data analysis software and access to readily available computation and 
storage are the two major bottlenecks faced by many research groups. 
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Results 

Our test case consisted 
of 27 prostate cancer 
samples grouped in 
three distinct conditions 
(nine samples per 
condition).  

Our Galaxy implementations of edgeR and DEXSeq workflows provide an accurate high-throughput analysis and performance comparisons of different RNA-seq tools in Galaxy. Both tools seem to be able 
to deal with an increased biological variation due to replicates and allow for paired samples. Since Cuffdiff2 is under active development, we expect an improved release targeting the issues described 
above. Until then, we recommend to adapt the RNA-seq workflow and provide alternative tools depending on the number of biological replicates per condition. Other alternatives besides edgeR include 
DESeq / DESeq2, BitSeq, EBSeq or the combination of Voom and Limma. We hope that our experiences will help developers and users to save time and effort when analyzing RNA-seq data. 

To demonstrate the advantages of grid /cloud usage for the analysis of RNA-seq data, we 
performed alignments of the 10 cancer - normal samples pairs on both the Dutch Life Science 
Grid (LSG) and a local workstation. Since alignments are one of the bottleneck operations in 
sequencing analysis, a major speed-up can leverage research efficiency data throughput. 

RNA-seq analysis on the Life Science Grid 

TraIT aims to develop a long-lasting IT infrastructure for molecular medicine that will facilitate 
the collection, storage, analysis, archiving, sharing and securing of data generated in operational 
CTMM research projects. 
The project will build on existing expertise to create an IT infrastructure that will help to 
accelerate the molecular research thoughout the Dutch Life Sciences and its Health sector.  
 
The Galaxy server can be accessed via the NBIC website:   
  
 

Method 7 (3+4) vs. 6 
(3+3) 

7 (4+3) vs. 6 
(3+3) 

7 vs. 7 (paired 
samples) 

Cufflinks 0 0 0 

edgeR 49 230 111 

DEXSeq 3 6 8 

The distribution of p-values derived from the Cuffdiff 2.0.2 depends on the number of samples 
per condition. Starting with a one vs. one comparison between unpaired samples (3+4 vs. 
3+3), Cuffdiff reports 47 genes as significant considering a p-value threshold of 0.05. This 
number drops to four when three samples are used per condition. Lastly, when using nine 
biological replicates per condition, Cuffdiff does not report any significant genes. This is also 
the case when higher stage tumors or paired samples are considered. 
In contrast, edgeR and DEXSeq both are able to model increased variance and provide 
significant results for all investigated contrasts (see Table 1, FDR < 0.05 and 3 genes with DEU, 
adj. p-value < 0.1). Furthermore, the independent result lists of Cuffdiff and edgeR share only 
one gene. Notably, both edgeR and DEXSeq do not produce usable results in case of no 
replicates. This is logical, since the estimated dispersion has to be inserted manually and 
therefore, any results obtained are depending on this estimate. Thus, the authors do not 
advise to use their software without replicates. 
To also take into account that cancer samples have an intrisically high variance, we also 
compared 10 tumor and 10 normal samples in a paired fashion. Again, Cuffdiff2 was not able 
to find any genes as statistically significant, whilst edgeR returns a list of 2986 genes (p-value < 
0.05) and 1570 genes (p-value < 0.01). 
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Cuffdiff 2.02

edgeR 3.04
DEXSeq 1.4

The groups are based on assigned Gleason scores, indicating progressing tumor stage with 
increasing number and 4+3 being worse than 3+4. Furthermore, two of these conditions 
represent tissue samples from the same patient and were therefore treated as paired samples.  
In addition, we used publicly available data to confirm our findings (Kannan et al., 2011), 
which consisted of 10 tumor – normal pairs from prostate cancer patients. 
 

Number of significant genes 
p-value < 0.05 

Tab. 1: Results of DE / DEU analysis, comparing 
9 samples per condition. 

Moreover, the runtime and 
computational requirements of the 
Cufflinks2/Cuffdiff2 pipeline exceed 
edgeR by far and do not scale well with 
an increasing number of samples.  
These findings suggest that Cuffdiff2 in 
its current release (2.02) is not suited 
for analysis of larger cohorts and thus 
alternative approaches are required. 

The machine environment of our workstation 
consisted of an 8-core processor and 24 GB RAM. 
In comparison, we made use of the ‘long’ queue 
of the LSG comprising a total of 2332 cores, 
whereas 8 cores were assigned per TopHat 
instance. As can be seen below, runtime of a 
single process  on the LSG far exceeds the one on 
a workstation due to a slower processing speed 
and time required for up-/download as well as 
queuing. This behaviour is reversed when more 
samples are being processed owing to 
parallelization of the actual alignment processes. 
Therefore, grid computation requires as much 
time as the slowest process, whereas runtime 
increases sequentially for local computation. 


