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While immense amounts of genomic data are now publicly
available, analyzing the data is a complicated and at times
resource exhaustive task. A well established analysis is the - APRIORI @
computation of pairwise overlap between two genomic tracks. ] EXPECteq Suppg rt 4
However, in certain situations it is valuable to consider a larger - Frequent itemset border ]
number of genomic tracks and e.g. discover subsets of the tracks _
that occur together at the same locations along the genome. An " Skipped 1 @ @
exampleofsuchaproblemistofind combinationsof transcription @a @ @

we take the genomic tracks to represent items and the base-
pair positions of the genome to represent transactions.

factor (TF) ChiP-seq tracks that occur at the same locations v/ N

in the genome, either from a set of tracks for different TFs or } ’ ‘.»'/" /
from a set of tracks for the same TF in different cells/settings. /’) ,“/ 4" \ /
The probler.n e.1t hand Fan be translate.d .into a more general / A"‘ / v*/_
problem within the field of data mining, called frequent '

itemset mining. According to the itemset mining terminology, 012 @ )

Our Galaxy-based web tool at the Genomic HyperBrowser web
server enables the user to run frequent itemset mining on large
setsof genomictracks. Theresultisalistoftrackcombinationsthat
occur together on at least a minimum number of base pairs along
thegenome. Wepresentresultsfortwodifferentapproaches,based
on the breadth-first Apriori and the depth-first Eclat algorithm.

Aditionally, we introduce another mining technique that
can be of interest. We use the expected support of a given
itemset, multiplied by a factor, as the decision threshold
wether the itemset is frequent or not. The resulting itemsets Fig 1. Latice representation of the search space; Explore routes of the algorithms.
are relatively frequent with regard to the chosen factor.
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1 - esrl need breast ZR-75-1 e2 16h . . . .
F] 10 - esri joseph breast t47d &2 45m bed.bit = The Apriori algorithm uses a breadth-first strategy.
11 - esrl joseph uterus ecc-1 e2 45m bed.txt + Wlll CaICUIate the Support Of all frequent itemsets
1 12 - esr1 joseph uterus ishikawa e2 45m bed.txt - Will perform more poorly than ECLAT when larger size frequent itemsets are expected
13 - esrl schmidt breast mcf-7 22 45m bed.txt
[l 14 - esr1 welboren MCF-7 breast 17be2 1h bed.txt . . . . . . . . .
o = The ECLAT algorithm uses a depth-first strategy with the intent to discover maximal frequent itemsets, from which all of its subsets
[] 15 - esr1 cicatiello breast mcf-7 e2 45m bed.txt .
[T 2 - esr1 carroll breast mcf7 e2 45m can be 1nfe]_‘ed ds frequent'
] 3 - esr1 tsai breast mcf-7 e2 6h bed.txt + Will execute significantly faster than other algorithms (when larger size frequent itemsets are expected, i.e. the minimum support
[l 4 - esr1 hurtado MCF-7 breast e2 45m bed.txt is Small)

"] 5 - esri hu MCF-7 breast e2 45m bed.txt

- If the frequent itemsets are of small size it will perform more poorly than Apriori
| & - esr1 gu breast mcf-7 e2 6h bed.txt

7 - eort stender MDAMB-231 e2 45m bed - Support of infered frequent itemsets is not calculated (inherited from maximal)
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[ 9 - esr1 joseph breast mcf-7 e2 45m bed.txt = The Expected Support mining algorithm defines the frequent itemset differently. It takes into account the “frequency” of all the single
- Al subtypes items in the itemset and an itemset is designated frequent when its support is larger than its expected support by a selected factor.
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""" Seled — " - Performance is poor in regard to time of execution, almost all subsets will be tested for frequency
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_____ Select . . The results of the frequent itemset mining can reveal interesting combinations of genomic tracks, which can be followed up with more
detailed analyses into how they are related.
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) Corresponding batch command line:
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