

Institut de biologie computationnelle

CRAC: An integrated approach to read analysis

N. Philippe^{1,3}, M. Salson², T. Commes³, E. Rivals¹

1 - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier

- 2 Laboratoire d'Informatique Fondamentale de Lille
- 3 Institut de Recherche en Biothérapie CHU de Montpellier

Abstract

NGS techniques are intensively used to investigate transcriptome complexity using RNA-sequencing assays. Huge read sets are then compared to a reference genome to determine transcribed exons, and unmapped reads are further analyzed for predicting splice junctions. Subsequent analyses seek to reconstruct standard and alternative transcripts. However, transcript inference can only succeed if reads are mapped correctly and splice junctions predicted acurrately. By comparing current solutions we gathered evidence suggesting that read processing was far from fully completing this task. Here, we propose a novel way of analyzing reads that integrates genomic locations and local coverage to distinguish sequence errors from biological mutations, and to infer directly splice junctions within a single read. An evaluation of our program CRAC shows that it improves mapping sensitivity up to 30% compared to state of the art solutions, while being highly specific. Such a sensitivity gain can impact the user's ability to detect rare mutations or splicing variants. Moreover, results indicate that CRAC predicts with bp precision the splice junctions of reads sequenced from non colinear, chimeric RNAs with [40, 60]% sensitivity and > 90% specificity, a unique feature to our knowledge. Finally, this integrated read analysis stategy may broaden the scope of the transcriptome that

is amenable to discovery using RNA-sequencing approaches.

Algorithm

CRAC proceeds each read in turn. For each, it monitors two "signals" that vary with the position in the read sequence of length m. For this, it considers the k-mer starting at every position (ie. m-k+1 possible k-mers) in the read and registers:

- 1 the exact mappability of the k-mer on the reference genome, its matching locations and their number,
- 2. the k-mer support, which we define as the number of reads sharing this k-mer (ie, the exact same k-mer sequence matches a k-mer from another read). The support value has a minimum value of one since the k-mer exists at least in the current read.

CRAC strategy is to analyse jointly k-mer support and k-mer

- k-mer that does not **exactly** map to the genome
- Starting position of a k-mer that does not exactly map to the genome
 - k-mer that **exactly** maps to the genome
- Starting position of a k-mer that exactly maps to the genome

- Biological validations on private AML library:
- $\bullet \sim 40$ millions of unoriented 100 bp reads
- Detection of **511** chimeras

Comparative evaluation	on of mapping sens	sitivity and
precision		

	75	bp		200	bp		
Tool	Sensitivity	Precision	Sensitiv	vity	Precision		
Bowtie	75.42	99.59	55	.72	99.81		
BWA	79.29	99.13	68	.66	96.86		
CRAC	94.51	99.72	96 .	02	99.92		
GASSST	70.73	99.09	59.	.43	97.86		
GSNAP	94.62	99.88	84.	84	99.28		
SOAP2	77.6	99.52	56	.08	99.78		

Comparative evaluation splice junction prediction tools

	75k	ор	200bp				
Tool	Sensitivity	Precision	Sensitivity	Precision			
CRAC	79.43	99.5	86.02	99.18			
GSNAP	84.17	97.03	72.94	97.09			
MapSplice	79.89	97.68	84.72	98.82			
TopHat	84.96	89.59	54.07	94.69			

Comparative evaluation of chimeric RNA prediction tools

	75ł	ор	200bp			
ōol	Sensitivity	Precision	Sensitivity	Precision		
CRAC	53.89	93.84	64.86	90.18		
/lapSplice	2.33	0	2.63	0.01		
opHatFusion	32.73	42.02				
opHatFusionPost	12.26	97.22				

ECHANT NIMES		MYH11-CBFB (INV16 Chimera)		NONE-PAN		ERCC2-SPI1			ZNF217-ZNF48					
NOM	CARYOTYPE		CT	TM	remarque	CT	TM	remarque	СТ	TM	remarque	CT	TM	remarque
00110000	IND/4C	Applied	27,21/26,96	82,9/83,02	POSITIF	31,29/31,47	79,98/80,20	POSITIF	34,93/36,05	82,02/81,95	POSITIF	40	68,62-84,15	negatif
05110089	114410	Promega	27,21/26,96	82,9/83,02	POSITIF	31,29/31,47	79,98/80,20	POSITIF	34,93/36,05	82,02/81,95	POSITIF	40	68,62-84,15	negatif
OM 090069	INV16	Applied	28,69/28,82	83,09/62,95	POSITIF	neant	none	negatif	39,55/38,40	482,11/75,414	POSITIF	neant/neant	none/none	negatif
		Promega	28,31/28,92	82,82/82,94	POSITIF	neant	none	negatif	38,68/38,83	,23-82,09/82,	POSITIF	neant/neant	none	negatif
014 14 04 74	151/46	Applied	40/36,59	75,63/82,72	POSITIF	neant	none	negatif	36,53/37,44	82,08/81,94	POSITIF	40/40	79,11/none	negatif
OM HOT/1	114410	Promega	35,01/34,89	82,73/83,05	POSITIF	neant	none	negatif	36,73/35,89	82,13/82,24	POSITIF	40/40	86,19/80,78	negatif
011 110 149	BB/46	Applied	27,12/27,28	82,86/83,14	POSITIF	neant	none	negatif	35,65/35,56	82,03/82,17	POSITIF	40/40	,29/65,05-79,	negatif
OM 110446	114410	Promega	26,3/26,18	82,96/82,92	POSITIF	neant/40	76,06	negatif	34,75/33,85	82,14/82,20	POSITIF	38,46/40	81,72/neant	negatif
Docto	BB/4C	Applied	36,52	82,75	POSITIF	neant	none	negatif	40	none	negatif	neant	none	negatif
R2020	11/1/10	Promega	not tested	not tested	NT	not tested	not tested	not tested	not tested	not tested	NT	not tested	not tested	not tested
00100200	I/M	Applied	40/40	77,4/75,31	negatif	neant	none	negatif	35,19/neant	82,07/none	POSITIF	neant/40	none/76,52	negatif
05100380	NN	Promega	not tested	not tested	NT	not tested	not tested	not tested	not tested	not tested	NT	not tested	not tested	not tested
014 140564	1/M	Applied	neant	none	negatif	neant	none	negatif	36,87	81,98	POSITIF	neant	none	negatif
OM 110564	NN.	Promega	neant	none	negatif	neant	none	negatif	34,64	82,05	POSITIF	40	69,34-84,36	negatif
OM 110522	KN	Applied	37,02	75,97	negatif	neant	none	negatif	37,12	82,1	POSITIF	37,62	81,72	negatif
		Promega	neant	none	negatif	neant	none	negatif	35,59	82,06	POSITIF	40	83,86	negatif
011 110500	KN	Applied	neant	67,61	negatif	neant	none	negatif	37,32	81,9	POSITIF	40	none	negatif
011110020	NN	Promega	neant	none	negatif	neant	none	negatif	35,59	82,12	POSITIF	40	none	negatif
OM 110424	KN	Applied	neant	none	negatif	40	77,69	proba negatif mais	34,54	82,21	POSITIF	40	65,05-79,40	negatif
011110424	NN	Promega	neant	none	negatif	37,61	75,25	proba negatif mais	33,02	82,07	POSITIF	40	83,47	negatif
0\$110518	KN	Applied	neant	none	negatif	neant	none	negatif	33,43	82,46	POSITIF	40	80,44	negatif
03110010	NN	Promega	neant	none	negatif	neant	none	negatif	34,07	82,23	POSITIF	40	78,21	negatif
OM100359	KN	Applied	neant	none	negatif	neant	none	negatif	37,02	82,15	POSITIF	38,12	81,71	negatif
011100000		Promega	40	75,58	negatif	40	77,41	negatif	36,27	82,1	POSITIF	38,21	76,3	negatif
OM100320	KN	Applied	36,61	76,07	negatif	neant	none	negatif	36,01	82,19	POSITIF	40	81,75	negatif
011100020	TAN .	Promega	40	81,59	negatif	neant	none	negatif	34,68	82,08	POSITIF	neant	none	negatif
OM100311	KN	Applied	neant	none	negatif	neant	none	negatif	36,96	82,15	POSITIF	neant	none	negatif
CINICOUT	nn -	Promega	39,36	75,71	negatif	neant	none	negatif	35,55	82,15	POSITIF	40	84,84	negatif
OM100093	KN	Applied	neant	none	negatif	38,78	77,09	proba negatif mais	34,06	82,12	POSITIF	40	78,21	negatif
011100000		Promega	40	none	negatif	neant	none	negatif	33,84	82,13	POSITIF	40	88,88	negatif
Cont		Applied	not tested	not tested	NT	not tested	not tested	not tested	not tested	not tested	NT	not tested	not tested	not tested
		Promega	38,01	75,61	negatif	40	none	negatif	30,52	82,2	NT	39,08	81,83	negatif
BLANC			neant	none	negatif	neant	none	negatif	40	,18/75,69/76,	negatif	neant	none	negatif
			40	75,9	negatif	neant	none	negatif	neant	none	negatif	40	81,67	negatif
VALIDATION			CHIME	RA cont INV16	CHIMERA in OMS110089 (INV16)				CHIMERA in LAM			CHIMERA ARTEFACTUAL CASE		

Conclusions

Highlights

- Low false positive rate
- Between 60 and 70 % of causes are found (mutations not found are due to a low coverage)

• junctions: more sensitive and more specific than GSNAP, MapSplice, and TopHat

Futur works

- Transcripts reconstruction (assembly)
- Clinical markers for prognostic and diagnostic
- Chimera variants in myeloid leukemia (normal karyotype)

CRAC is particularly suitable for the data of the future: more massive and longer