
High-Performance De Novo RNA-Transcript Assembly Leveraging Distributed Memory and Massive Parallelization

Pierre Carrier, Bill Long, Cray, Inc. Carlos P. Sosa, Cray Inc. and BICB, University of Minnesota Rochester ; Thomas William TU-Dresden; Brian Haas, Timothy Tickle Broad Institute

Abstract
Exemplifying collaborative software development between industry and academia to tackle

computational challenges in manipulating large volumes of next-gen sequence data, leveraging

advances in algorithm development and compute hardware, we describe our efforts to optimize the

performance of the Trinity RNA-Seq de novo assembly software. Three versions of Trinity's

Inchworm computationally intensive part (one that is based on the original OpenMP version, and

two new versions that are based on MPI and on Fortran2008). New results of Inchworm’s parallel

performance for various real-life problems (e.g., mouse, schizosaccharomyces pombe) are presented,

as well as a detailed discussion of the MPI and PGAS computations scheme for Inchworm.

Computations at Cray, Inc. MPI inchworm

Fortran2008 inchworm

Building Kmer

and partitioning

according to

central kmer

value and thread

number

Building

Contigs

We thank for their support:

RNA-Seq

De novo transcript assembly

Contemporary strategies for transcript reconstruction from RNA-Seq

Genome

Genome

RNA-Seq reads

Tophat

Cufflinks

No reference genome

Thousands of
disjoint graphs

Trinity de novo RNA-Seq Assembly Pipeline

Harvesting

contigs
 mouse.fasta file iworm.fasta

MPI parallel
Working on
parallelizing

Sequential I/O

Example of use for partitioning kmers, or reads, file among images
(“images” in Fortran2008 are equivalent to the concept of MPI ranks):

partition_size = input_lengh/total_number_of_PEs

partition_start = max(1, (my_image-1)*partition_size - read_overlap)

partition_stop = min(input_length, my_image*partition_size)

if (my_image == total_number_of_images) partition_stop = input_length

partition_length= partition_stop – partition_start + 1
allocate(Buffer_kmers(partition_length), stat=ios) ! Same as malloc in C

read(unit,pos=partition_start,iostat=ios) Buffer_kmers

“Cray BioLib” was a library of fortran90 routines that was developed by Bill Long a few years ago. We are now

adapting and using this library in order to build a Fortran2008 version of inchworm. We focused first on reading, and

on sorting the kmers. We are now working on defining an efficient algorithm for the kmer store and contig builds.

Performance of Fortran2008 reads, bit conversion, and sorting is excellent. The library is also helping define the

above MPI version.

Note that co-arrays will be part of gnu fortran (gfortran) starting with version 4.10.

This Cray bioinformatics library includes the following list of Fortran library routines:
• Parallel search and sort routines

• Parallel Smith-Waterman alignment routines

• Parallel sequence manipulation routines

• Parallel file handling routines
• Bit manipulation routines

Example using bit manipulation (ASCII to binary) in Cray BioLib:

A = 0100 0001

C = 0100 0011

T = 0101 0100

G = 0100 0111

Reads.fastq file

Image 1

Image 2

Image 3

Image N

partition_start

partition_start

partition_start

partition_start

Schematic view of a Cray XC30 cabinet

Inchworm is the first part of the TrinityRNASeq

software. We describe here the new inchworm

program based on Message Passing Interface

(MPI).

All computations are performed on the XC30. We also developed a Galaxy interface on one of our

Cray XC30, and show that all features of the GalaxyProject are available on a Cray computer.

The figure above shows the GalaxyProject at work on the Cray XC30.

Inchworm is made of three main parts, as

shown in the graph below showing scaling. The

kmer building and the contigs building are now

fully parallel, and indeed show good scaling.

Harvest contigs is still sequential and is in the

process of being parallelized.

Photograph of cabinet

Aries fast

interconnect network,

one per chassis

Three main sections define the TrinityRNASeq software.

We focus our work on the Inchworm part:

A single cabinet of the Cray XC30 is composed of 3 chassis. One chassis contains 16 slots, that

each hosts a blade. One blade contains 4 nodes. In a given cabinet populated with, for example,

IVB-10 (as used for the computations shown here), each node has a total of 20 MPI ranks (or

images). With this configuration the fast Aries network (shown above, right) interconnects 16 X 4

x 20 processes, or 1280 MPI ranks (or images). One cabinet of IVB-10 can thus host a total of

3840 MPI ranks. The XC30 figure below (as part of the GalaxyProject at Cray) shows an example

with 2 rows of 2 pairs of cabinets.

Note: Some of the blades can be replaced with solid-states drives (SSD). Those SSD’s then

become part of the Aries interconnect, for fast I/O. It can be used in conjunction to an external file

system (Sonexion). This configuration is called the Local Storage Hierarchy (LSH) architecture.

We are also working on building
the RNA-seq contigs of the

mexican axolotl,

which has a sequence that is many
times larger than the mouse.

Credit: Jessica Whited
at Brigham and Women’s Hospital (BWH)

Regenerative Medicine Center

grant #1-U24-CA180922-01

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 10 100 1000 10000

Contig building

Kmer storing

Combined runtime

T
im

e
 (

s
e
c
o
n
d
s
)

MPI ranks

36 x faster

A
c
tu

a
l
F

o
rt

ra
n
2
0
0
8
 c

o
d
e
,

n
o
t

a
 p

s
e
u
d
o
c
o
d
e

C
re

at
iv
e

C
om

m
on

s
Li
ce

ns
e.

 F
10

00

P
er

m
itt
ed

 u
nd

er
 C

re
at

iv
e

C
om

m
on

s
Li
ce

ns
e.

 F
10

00
 P

os
te

rs
: U

se

P
os

te
rs

: U
se

 P
er

m
itt
ed

 u
nd

er
 C

re
at

iv
e

C
om

m
on

s
Li
ce

ns
e.

 F
10

00
 P

os
te

rs
: U

se
 P

er
m

itt
ed

F10
00

 P
os

te
rs

: U
se

 P
er

m
itt
ed

 u
nd

er
 C

re
at

iv
e

C
om

m
on

s
Li
ce

ns
e.

 F
10

00
 P

os
te

rs
: U

se
 P

er
m

itt
ed

 u
nd

er
 C

re
at

iv
e

U
se

 P
er

m
itt
ed

 u
nd

er
 C

re
at

iv
e

C
om

m
on

s
Li
ce

ns
e.

 F
10

00
 P

os
te

rs
: U

se
 P

er
m

itt
ed

 u
nd

er
 C

re
at

iv
e

C
om

m
on

s
Li
ce

ns
e.

P
er

m
itt
ed

 u
nd

er
 C

re
at

iv
e

C
om

m
on

s
Li
ce

ns
e.

 F
10

00
 P

os
te

rs
: U

se
 P

er
m

itt
ed

 u
nd

er
 C

re
at

iv
e

C
om

m
on

s

C
re

at
iv
e

C
om

m
on

s
Li
ce

ns
e.

 F
10

00
 P

os
te

rs
: U

se
 P

er
m

itt
ed

 u
nd

er
 C

re
at

iv
e

C
om

m
on

s
Li
ce

ns
e.

 F
10

00
 P

os
te

rs
: U

se
 P

er
m

itt
ed

