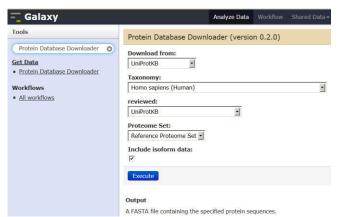
FLEXIBLE, ACCESSIBLE & REPRODUCIBLE WORKFLOWS FOR TANDEM PROTEOGENOMIC AND METAPROTEOMIC ANALYSIS USING THE GALAXYP PLATFORM. Pratik Jagtap¹; Brian Sandri²; Julie Yang²; Kevin Murray²; Joel Kooren²; James Johnson³; Getiria Onsongo³; Joel Rudney²; Christine Wendt² and Tim Griffin1^{1,2} 1. Center for Mass Spectrometry and Proteomics, UMN, St. Paul, MN; 2. University of Minneapolis, MN; 3. Minneapolis, MN; 3. Minnesota Supercomputing Institute, Minneapolis, MN.


INTRODUCTION

- **Proteogenomics (for identifying unannotated proteoforms) and** metaproteomics (for characterizing non-host/multi-organism proteomes) are research areas that extend discoveries beyond the reference proteome.
- For biomedically-relevant proteomics studies, tandem proteogenomic and metaproteomic analysis offers great promise for new discoveries.
- We describe effective and accessible bioinformatic analytical workflows, amenable to creative customization and sharing to foster collaborative research efforts.

GALAXYP

output_database (fasta) Human UniProt Databas

GalaxyP Tools

GalaxyP has multiple software tools - some proteomics-specific - and others from the genomics Galaxy framework.

Benefits of Galaxy / GalaxyP:

- Software accessibility and usability.
- Share-ability of tools, workflows and histories.
- **Reproducibility and ability to test and compare** results after using multiple parameters.

METHODS & DATASETS

RAW files from multiple datasets (see below) were generated from Orbitrap Velos instrument The processed peak lists were searched using ProteinPilot TM version 4.5 (AB Sciex) within GalaxyP (usegalaxyp.org). the datasets were searched against 3-frame translated cDNA database and the human oral microbial database by using two-step method (Jagtap *et al* 2013). After optimization & testing, multiple workflows were used in a sequential manner to generate inputs for the subsequent workflow. Microbial peptides were identified after using metaproteomic workflows & novel proteoforms were identified after using proteogenomic workflows.

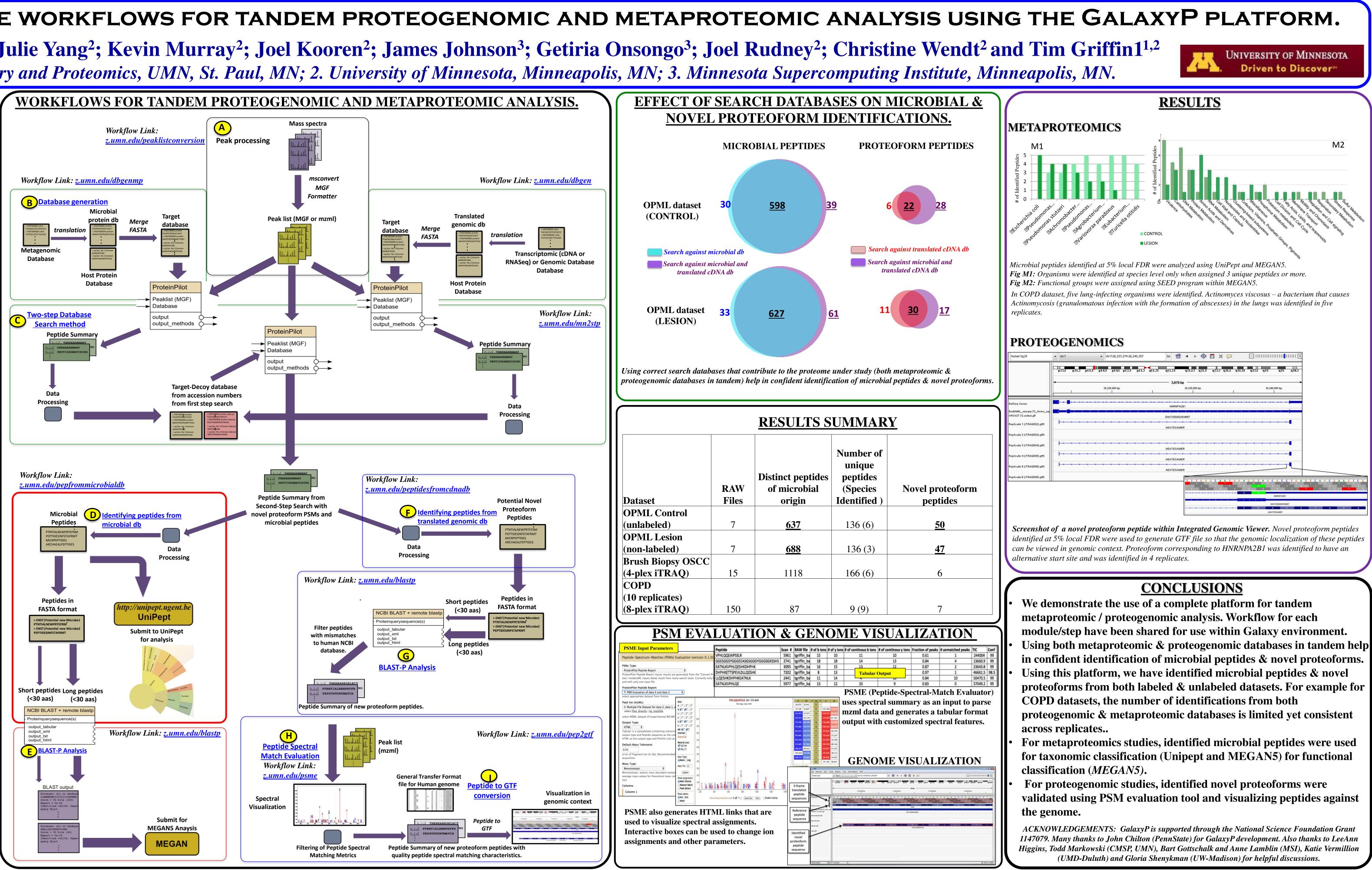
UNLABELED SAMPLE:

• Oral pre-malignant lesion (<u>OPML</u>) dataset was collected as oral exudate using PerioPaper strip method (Kooren et al 2011) from an individual with pre-malignant lesion & a matched control sample from adjacent oral cavity.

4-plex iTRAQ LABELED SAMPLE:

Brush biopsies were collected from patients diagnosed with OPML and from patients with **Oral Squamous Cell Carcinoma (OSCC). For each patient, brush biopsies from the lesion &** the healthy mucosa of corresponding contralateral area were collected (Yang et al 2014).

8-plex iTRAQ LABELED SAMPLE:


Chronic Obstructive Pulmonary Disease (<u>COPD</u>) – linked lung cancer tissue samples were collected & subjected to iTRAQ labeling and 2D LC-MS. Ten replicates of this dataset were searched against the 3-frame translated cDNA database & human oral microbiome database (HOMD) using the two-step method.

GalaxyP Workflow

lunning workflow "Proteogenomics Database"	Expand All Colla
Step 1: Protein Database Downloader (version 0.2.0)	
Step 2: Protein Database Downloader (version 0.2.0)	
Step 3: Input_dataset ftp://ftp.ensembil.org/pub/release-68/fasta/homo_sapiens/cdna/Homo_sapiens.GRCh37.68.cdna.all.fa.gz	
ENSEMBL	
Step 4: Input dataset genome.ewha.ac.kr/ECgene/	
EC Gene 3 64: http://genome.enh.w_fasta.txt 3 type to filter	
Step 5: getorf (version 5.0.0)	
Step 6: getorf (version 5.0.0)	
Step 7: Merge FASTA Databases (version 0.1)	
" Send results to a new history Run workflow	

Tools can be used in a sequential manner to generate workflows that can be reused, shared and creatively modified for multiple studies.

- Analytical transparency
- Scalability of data

